scholarly journals Caffeic Acid Phenethyl Ester (CAPE) Inhibits Growth of Chromosomally instable bub1Δ mutant in Saccharomyces cerevisiae

2017 ◽  
Author(s):  
Zeynep N. Azman ◽  
Aysel Kiyici ◽  
Mufide Oncel ◽  
H. Ramazan Yilmaz ◽  
Esra Gunduz ◽  
...  

AbstractChromosomal instability (CIN) is a hallmark of cancer cells. Spindle Assembly Checkpoint (SAC) proteins such as Bub1 monitor errors in chromosome segregation and cause cell cycle delay to prevent CIN. Altered expression of BUBl is observed in several tumor samples and cancer cell lines which display CIN. Caffeic Acid Phenethyl Ester (CAPE) which is an active component of propolis obtained from bee hives has anti-inflammatory antioxidant and anticarcinogenic properties. We used budding yeast S. cerevisiae as a model organism to investigate the molecular mechanism by which CAPE can inhibit the growth of cells with high levels of CIN. Here we show that CAPE leads to growth inhibition of bub1Δ strains. CAPE treatment suppressed chromosome mis-segregation in bub1Δ strain possibly due to apoptosis of chromosomally instable bub1Δ cells. We propose that CAPE may serve as a potential therapeutic agent for treatment of BUB1 deficient cancers and other cancers that exhibit CIN.

2019 ◽  
Vol 20 (24) ◽  
pp. 6182 ◽  
Author(s):  
Delaney Sherwin ◽  
Yanchang Wang

Accurate chromosome segregation during cell division is essential to maintain genome integrity in all eukaryotic cells, and chromosome missegregation leads to aneuploidy and therefore represents a hallmark of many cancers. Accurate segregation requires sister kinetochores to attach to microtubules emanating from opposite spindle poles, known as bipolar attachment or biorientation. Recent studies have uncovered several mechanisms critical to chromosome bipolar attachment. First, a mechanism exists to ensure that the conformation of sister centromeres is biased toward bipolar attachment. Second, the phosphorylation of some kinetochore proteins destabilizes kinetochore attachment to facilitate error correction, but a protein phosphatase reverses this phosphorylation. Moreover, the activity of the spindle assembly checkpoint is regulated by kinases and phosphatases at the kinetochore, and this checkpoint prevents anaphase entry in response to faulty kinetochore attachment. The fine-tuned kinase/phosphatase balance at kinetochores is crucial for faithful chromosome segregation during both mitosis and meiosis. Here, we discuss the function and regulation of protein phosphatases in the establishment of chromosome bipolar attachment with a focus on the model organism budding yeast.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Sumeyya Akyol ◽  
Veli Ugurcu ◽  
Aynur Altuntas ◽  
Rukiye Hasgul ◽  
Ozlem Cakmak ◽  
...  

Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury after ischemia/reperfusion (I/R). In this review, we summarized and critically evaluated the current knowledge regarding the protective effect of CAPE in nephrotoxicity induced by several special medicines such as cisplatin, doxorubicin, cyclosporine, gentamycin, methotrexate, and other causes leading to oxidative renal injury, namely, I/R models and senility.


2004 ◽  
Vol 24 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Süleyman Özen ◽  
Ömer Akyol ◽  
Mustafa Iraz ◽  
Sadık Söğüt ◽  
Fikret Özuğurlu ◽  
...  

2019 ◽  
Author(s):  
Suganthi Chittaranjan ◽  
Jungeun Song ◽  
Susanna Y. Chan ◽  
Stephen Dongsoo Lee ◽  
Shiekh Tanveer Ahmad ◽  
...  

AbstractBackgroundCIC is a transcriptional repressor inactivated by loss-of-function mutations in several cancer types, including gliomas, lung cancers, and gastric adenocarcinomas. CIC alterations and/or loss of CIC activity have been associated with poorer outcomes and more aggressive phenotypes across cancer types, which is consistent with the notion that CIC functions as a tumour suppressor across a wide range of contexts.ResultsUsing mammalian cells lacking functional CIC, we found that CIC deficiency was associated with chromosome segregation (CS) defects, resulting in chromosomal instability and aneuploidy. These CS defects were associated with transcriptional dysregulation of spindle assembly checkpoint and cell cycle regulators. We also identified novel CIC interacting proteins, including core members of the SWI/SNF complex, and showed that they cooperatively regulated the expression of genes involved in cell cycle regulation. Finally, we showed that loss of CIC and ARID1A cooperatively increased CS defects and reduced cell viability.ConclusionsOur study ascribes a novel role to CIC as an important regulator of the cell cycle and demonstrates that loss of CIC can lead to chromosomal instability and aneuploidy in human and murine cells through defects in CS, providing insight into the underlying mechanisms of CIC’s increasingly apparent role as a “pan-cancer” tumour suppressor.


Pharmacia ◽  
2019 ◽  
Vol 66 (3) ◽  
pp. 107-114 ◽  
Author(s):  
Yordan Yordanov

Caffeic acid phenethyl ester (CAPE) is the major pharmacologically-active component of some propolis types, rich in polyphenols, such as poplar propolis types. CAPE has the potential to be applied as a pharmaceutical as it possesses most of the pharmacological activities of propolis, such as anti-proliferative, antioxidant, immunomodulatory, antidiabetic, anti-inflammatory and antimicrobial. Its advantage is that it lacks some of the downsides of total propolis extracts, such as inability for unified standardization, which is cornerstone for implementing its therapeutic potential as a drug. The current paper provides an overview on the pharmacodynamic principles of CAPE. We present literature search outcomes form ClinicalTrials.gov database and from scientific publications, available on Scopus and Crossref databases. We take a round view of CAPE’s potential therapeutic implications in light of approved drugs with related modes of action.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1211-1211
Author(s):  
Donna Cerabona ◽  
Zahi Abdul Sater ◽  
Elizabeth Sierra Potchanant ◽  
Ying He ◽  
Zejin Sun ◽  
...  

Abstract The Fanconi anemia (FA/BRCA) signaling network prevents bone marrow failure and cancer by protecting genomic integrity. Biallelic germline mutations within this gene network result in Fanconi anemia, an inherited bone marrow failure syndrome characterized by genomic instability and a predisposition to bone marrow failure, myelodysplasia and cancer, particularly acute myelogenous leukemia (AML). Heterozygous inborn mutations in the BRCA branch of FA network increase risk of breast and ovarian cancers as well as other tumors, and somatic mutations of FA/BRCA genes occur in malignancies in non-Fanconi patients. Thus, disruption of FA/BRCA signaling promotes malignancies in the inherited genetic syndromes and in the general population. The FA/BRCA network functions as a genome gatekeeper throughout the cell cycle. In interphase, the FA/BRCA network provides a crucial line of defense against mutagenesis by coordinating DNA damage response to a variety of genotoxic insults, from endogenous aldehydes to replication errors and mutagen exposure. Less is known about the role of the FA/BRCA pathway during mitosis. However, FA signaling has recently been implicated in multiple aspects of cell division, including the spindle assembly checkpoint (SAC) that ensures high-fidelity chromosome segregation at metaphase to anaphase transition; cytokinesis; centrosome maintenance and repair of ultrafine anaphase bridges. Although chromosomal instability due to mitotic errors is a hallmark of cancer, the in vivo contribution of abnormal mitosis to malignant transformation of FA-deficient hematopoietic cells remains unknown. To determine whether error-prone chromosome segregation upon loss of FA signaling contributes to abnormal hematopoiesis and cancer, we generated a novel murine FA model by genetically weakening the SAC in the FA-deficient background. The resulting mice were viable and born at expected Mendelian ratios, but exhibited increased baseline in vivo chromosomal instability evidenced by elevated red blood cell micronucleation, increased frequency of chromosome missegregation and DNA breakage in microscopy-based cytome assays, and augmented bone marrow karyotype instability. Importantly, unlike FA or SAC control animals, the FA-SAC mice were prone to premature death due to the development of myelodysplasia and AML at young age, recapitulating disease manifestations of human Fanconi anemia. This study provides the in vivo evidence supporting the essential role of compromised chromosome segregation in the development of myelodysplasia and acute leukemia due to impaired FA signaling. Our observations provide novel insights into complex mechanisms of genomic instability and carcinogenesis due to FA deficiency. Impaired mitosis is a well-established therapeutic target, and our independent ex vivo experiments using FA patient-derived primary cells show that exposure to antimitotic chemotherapeutics is synthetic lethal with loss of the FA network. Thus, our findings may have implications for future precision strategies against FA-deficient, chromosomally unstable hematopoietic cancers. The FA-SAC mouse model offers a preclinical platform to systematically test this hypothesis in vivo. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document