scholarly journals MRI tracking reveals selective accumulation of stem cell-derived magneto-extracellular vesicles in sites of injury

2019 ◽  
Author(s):  
Zheng Han ◽  
Senquan Liu ◽  
Yigang Pei ◽  
Zheng Ding ◽  
Yuguo Li ◽  
...  

AbstractHuman stem-cell-derived extracellular vesicles (EVs) are currently being investigated for cell-free therapy in regenerative medicine applications, but their biodistribution and tropic properties for homing to injured tissues are largely unknown. Here, we labeled EVs with magnetic nanoparticles to create magneto-EVs that can be tracked by magnetic resonance imaging (MRI). Superparamagnetic iron oxide (SPIO) nanoparticles were coated with polyhistidine tags, which enabled purification of labeled EVs by efficiently removing unencapsulated SPIO particles in the solution. The biodistribution of systemically injected human induced pluripotent stem cell (iPSC)-derived magneto-EV was assessed in three different animal models of kidney injury and myocardial ischemia. Magneto-EVs were found to selectively home to the injury sites and conferred substantial protection in a kidney injury model. In vivo MRI tracking of magnetically labeled EVs represents a new powerful method to assess and quantify their whole-body distribution, which may help optimize further development of EV-based cell-free therapy.

2019 ◽  
Vol 28 (1_suppl) ◽  
pp. 160S-165S ◽  
Author(s):  
Yoshiki Kuse ◽  
Hideki Taniguchi

Organ failure manifests severe symptoms affecting the whole body that may cause death. However, the number of organ donors is not enough for patients requiring transplantation worldwide. Illegal transplantation is also sometimes conducted. To help address this concern, primary hepatocytes are clinically transplanted in the liver. However, donor shortage and host rejection via instant blood-mediated inflammatory reactions are worrisome. Induced pluripotent stem cell-derived hepatocyte-like cells have been developed as an alternative treatment. Recently, organoid technology has been developed to investigate the pathology and mechanism of organoids in cultures. Organoids can be transplanted with vascularization and connected to host blood vessels, and functionally mature better in vivo than in vitro. Hepatic organoids improve pathology in liver disease models. In this review, we introduce induced pluripotent stem cell- and organoid-based therapies against liver diseases considering present and future perspectives.


Author(s):  
Prithiv K R Kumar

Renal failure is a major health problem. The mortality rate remain high despite of several therapies. The most complex of the renal issues are solved through stem cells. In this review, different mechanism for cure of chronic kidney injury along with cell engraftment incorporated into renal structures will be analysed. Paracrine activities of embryonic or induced Pluripotent stem cells are explored on the basis of stem cell-induced kidney regeneration. Several experiments have been conducted to advance stem cells to ensure the restoration of renal functions. More vigour and organised protocols for delivering stem cells is a possibility for advancement in treatment of renal disease. Also there is a need for pressing therapies to replicate the tissue remodelling and cellular repair processes suitable for renal organs. Stem cells are the undifferentiated cells that have the ability to multiply into several cell types. In vivo experiments on animal’s stem cells have shown significant improvements in the renal regeneration and functions of organs. Nevertheless more studies show several improvements in the kidney repair due to stem cell regeneration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gabriel Peinkofer ◽  
Martina Maass ◽  
Kurt Pfannkuche ◽  
Agapios Sachinidis ◽  
Stephan Baldus ◽  
...  

Abstract Background Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) are regarded as promising cell type for cardiac cell replacement therapy, but it is not known whether the developmental stage influences their persistence and functional integration in the host tissue, which are crucial for a long-term therapeutic benefit. To investigate this, we first tested the cell adhesion capability of murine iPSC-CM in vitro at three different time points during the differentiation process and then examined cell persistence and quality of electrical integration in the infarcted myocardium in vivo. Methods To test cell adhesion capabilities in vitro, iPSC-CM were seeded on fibronectin-coated cell culture dishes and decellularized ventricular extracellular matrix (ECM) scaffolds. After fixed periods of time, stably attached cells were quantified. For in vivo experiments, murine iPSC-CM expressing enhanced green fluorescent protein was injected into infarcted hearts of adult mice. After 6–7 days, viable ventricular tissue slices were prepared to enable action potential (AP) recordings in transplanted iPSC-CM and surrounding host cardiomyocytes. Afterwards, slices were lysed, and genomic DNA was prepared, which was then used for quantitative real-time PCR to evaluate grafted iPSC-CM count. Results The in vitro results indicated differences in cell adhesion capabilities between day 14, day 16, and day 18 iPSC-CM with day 14 iPSC-CM showing the largest number of attached cells on ECM scaffolds. After intramyocardial injection, day 14 iPSC-CM showed a significant higher cell count compared to day 16 iPSC-CM. AP measurements revealed no significant difference in the quality of electrical integration and only minor differences in AP properties between d14 and d16 iPSC-CM. Conclusion The results of the present study demonstrate that the developmental stage at the time of transplantation is crucial for the persistence of transplanted iPSC-CM. iPSC-CM at day 14 of differentiation showed the highest persistence after transplantation in vivo, which may be explained by a higher capability to adhere to the extracellular matrix.


2021 ◽  
Vol 23 (5) ◽  
pp. 290-303
Author(s):  
Yong Jin ◽  
Manling Zhang ◽  
Meishuang Li ◽  
Hao Zhang ◽  
Feng Zhang ◽  
...  

2018 ◽  
Vol 122 (2) ◽  
pp. 296-309 ◽  
Author(s):  
Marta Adamiak ◽  
Guangming Cheng ◽  
Sylwia Bobis-Wozowicz ◽  
Lin Zhao ◽  
Sylwia Kedracka-Krok ◽  
...  

Circulation ◽  
2021 ◽  
Vol 143 (16) ◽  
pp. 1635-1638
Author(s):  
Danny El-Nachef ◽  
Darrian Bugg ◽  
Kevin M. Beussman ◽  
Sonette Steczina ◽  
Amy M. Martinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document