scholarly journals Low-cost microphysiological systems: Feasibility study of a tape-based barrier-on-chip system for small intestine modeling

2020 ◽  
Author(s):  
Thomas E. Winkler ◽  
Michael Feil ◽  
Eva F.G.J. Stronkman ◽  
Isabelle Matthiesen ◽  
Anna Herland

AbstractWe see affordability as a key challenge in making organs-on-chips accessible to a wider range of users, particularly outside the highest-resource environments. Here, we present an approach to barrier-on-a-chip fabrication based on double-sided pressure-sensitive adhesive tape and off-the-shelf polycarbonate. Besides a low materials cost, common also to PDMS or thermoplastics, it requires minimal (€ 100) investment in laboratory equipment, yet at the same time is suitable for upscaling to industrial roll-to-roll manufacture. We evaluate our microhpysiological system with an epithelial (C2BBe1) barrier model of the small intestine, studying the biological effects of permeable support pore size, as well as stimulation with a common food compound (chili pepper-derived capsaicinoids). The cells form tight and continuous barrier layers inside our systems, with comparable permeability but superior epithelial polarization compared to Transwell culture, in line with other perfused microphysiological models. Permeable support pore size is shown to weakly impact barrier layer integrity as well as the metabolic cell profile. Capsaicinoid response proves distinct between culture systems, but we show that impacted metabolic pathways are partly conserved, and that cytoskeletal changes align with previous studies. Overall, our tape-based microphysiolgical system proves to be a robust and reproducible approach to studying physiological barriers, in spite of its low cost.

2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.


Author(s):  
Md Nazibul Islam ◽  
Steven M Doria ◽  
Zachary R Gagnon

Over the last two decades, microfluidics has received significant attention from both academia and industry, and researchers report thousands of new prototype devices each year for use in a broad range of environmental, pharmaceutical, and biomedical engineering applications. While lab-on-a-chip fabrication costs have continued to decrease, the hardware required for monitoring fluid flows within microfluidic devices themselves remains expensive and often cost prohibitive for researchers interested in starting a microfluidics project. As microfluidic devices become capable of handling complex fluidic systems, low-cost, precise and real time pressure and flow rate measurement capabilities has become increasingly important. While many labs use commercial platforms and sensor, these solutions can often cost thousands of dollars and can be too bulky for on-chip use. Here we present a new inexpensive and easy -to-use piezoresistive pressure and flow sensor that can be easily integrated into existing on-chip microfluidic channels. The sensor consists of PDMS-Carbon black conductive membranes and uses an impedance analyzer to measure impedance change due fluid pressure. The sensor costs several orders of magnitude less than existing commercial platforms and can monitor local fluid pressures and calculate flow rates based on pressure gradient.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1212-1226 ◽  
Author(s):  
Thomas E. Winkler ◽  
Michael Feil ◽  
Eva F. G. J. Stronkman ◽  
Isabelle Matthiesen ◽  
Anna Herland

High costs are a key challenge in “democratization” of organ-chip research. We present a low-resource barrier-on-chip based on tape, and use it to model small intestine and its response to chili peppers (capsaicinoids).


Author(s):  
Md Nazibul Islam ◽  
Steven M Doria ◽  
Zachary R Gagnon ◽  
Xiaotong Fu

Over the last two decades, microfluidics has received significant attention from both academia and industry, and researchers report thousands of new prototype devices each year for use in a broad range of environmental, pharmaceutical, and biomedical engineering applications. While lab-on-a-chip fabrication costs have continued to decrease, the hardware required for monitoring fluid flows within microfluidic devices themselves remains expensive and often cost prohibitive for researchers interested in starting a microfluidics project. As microfluidic devices become capable of handling complex fluidic systems, low-cost, precise and real time pressure and flow rate measurement capabilities has become increasingly important. While many labs use commercial platforms and sensor, these solutions can often cost thousands of dollars and can be too bulky for on-chip use. Here we present a new inexpensive and easy -to-use piezoresistive pressure and flow sensor that can be easily integrated into existing on-chip microfluidic channels. The sensor consists of PDMS-Carbon black conductive membranes and uses an impedance analyzer to measure impedance change due fluid pressure. The sensor costs several orders of magnitude less than existing commercial platforms and can monitor local fluid pressures and calculate flow rates based on pressure gradient.


2018 ◽  
Vol 69 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Zhifu Yin ◽  
Helin Zou

Abstract With the development of the microstructure fabrication technique, microfluidic chips are widely used in biological and medical researchers. Future advances in their commercial applications depend on the mass bonding of microfluidic chip. In this study we are presenting a simple, low cost and fast way of bonding microfluidic chips at room temperature. The influence of the bonding pressure on the deformation of the microchannel and adhesive tape was analyzed by numerical simulation. By this method, the microfluidic chip can be fully sealed at low temperature and pressure without using any equipment. The dye water and gas leakage test indicated that the microfluidic chip can be bonded without leakage or block and its bonding strength can up to 0.84 MPa.


Author(s):  
T. N. Antipova ◽  
D. S. Shiroyan

The system of indicators of quality of carbon-carbon composite material and technological operations of its production is proved in the work. As a result of the experimental studies, with respect to the existing laboratory equipment, the optimal number of cycles of saturation of the reinforcing frame with a carbon matrix is determined. It was found that to obtain a carbon-carbon composite material with a low cost and the required quality indicators, it is necessary to introduce additional parameters of the pitch melt at the impregnation stage.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1178 ◽  
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a microfluidic device implemented as a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval was carried on after bacteria heat-lysis by an on-chip micro-heater, whose function was characterized at different working parameters. Carbon resistive temperature sensors were tested, characterized and printed on the biochip sealing film to monitor the heating process. Off-chip and on-chip processed RNA were hybridized with capture probes on the reaction chamber surface and identification was achieved by detection of fluorescence tags. The application of the mentioned techniques and materials proved to allow the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the integration potential of fully thermoplastic devices in biosensor systems.


1987 ◽  
Vol 14 (3) ◽  
pp. 134-140 ◽  
Author(s):  
K.A. Clarke

Practical classes in neurophysiology reinforce and complement the theoretical background in a number of ways, including demonstration of concepts, practice in planning and performance of experiments, and the production and maintenance of viable neural preparations. The balance of teaching objectives will depend upon the particular group of students involved. A technique is described which allows the embedding of real compound action potentials from one of the most basic introductory neurophysiology experiments—frog sciatic nerve, into interactive programs for student use. These retain all the elements of the “real experiment” in terms of appearance, presentation, experimental management and measurement by the student. Laboratory reports by the students show that the experiments are carefully and enthusiastically performed and the material is well absorbed. Three groups of student derive most benefit from their use. First, students whose future careers will not involve animal experiments do not spend time developing dissecting skills they will not use, but more time fulfilling the other teaching objectives. Second, relatively inexperienced students, struggling to produce viable neural material and master complicated laboratory equipment, who are often left with little time or motivation to take accurate readings or ponder upon neurophysiological concepts. Third, students in institutions where neurophysiology is taught with difficulty because of the high cost of equipment and lack of specific expertise, may well have access to a low cost general purpose microcomputer system.


Author(s):  
Takamasa Suzuki ◽  
Tomohiro Aoki ◽  
Masato Saito ◽  
Ichiro Hijikuro ◽  
Shoko Itakura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document