scholarly journals Catabolism of 3-hydroxypyridine by Ensifer adhaerens HP1: a novel four-component gene encoding 3-hydroxypyridine dehydrogenase HpdA catalyzes the first step of biodegradation

2020 ◽  
Author(s):  
Haixia Wang ◽  
Xiaoyu Wang ◽  
Hao Ren ◽  
Xuejun Wang ◽  
Zhenmei Lu

Abstract3-Hydroxypyridine (3HP) is an important natural pyridine derivative. Ensifer adhaerens HP1 can utilize 3HP as the sole source of carbon, nitrogen and energy to grow. However, the genes responsible for the degradation of 3HP remain unknown. In this study, we predicted that a gene cluster, designated 3hpd, may be responsible for the degradation of 3HP. The initial hydroxylation of 3HP is catalyzed by a four-component dehydrogenase (HpdA1A2A3A4), leading to the formation of 2,5-dihydroxypyridine (2,5-DHP) in E. adhaerens HP1. In addition, the SRPBCC component in HpdA existed as a separate subunit, which is different from other SRPBCC-containing molybdohydroxylases acting on N-heterocyclic aromatic compounds. Our findings provide a better understanding of the microbial degradation of pyridine derivatives in nature. Additionally, research on the origin of the discovered four-component dehydrogenase with a separate SRPBCC domain may be of great significance.Importance3-Hydroxypyridine is an important building block for synthesizing drugs, herbicides and antibiotics. Although the microbial degradation of 3-hydroxypyridine has been studied for many years, the molecular mechanisms remain unclear. Here, we show that 3hpd is responsible for the catabolism of 3-hydroxypyridine. The 3hpd gene cluster was found to be widespread in Actinobacteria, Rubrobacteria, Thermoleophilia, and Alpha-, Beta-, and Gammaproteobacteria, and the genetic organization of the 3hpd gene clusters in these bacteria showed high diversity. Our findings provide new insight into the catabolism of 3-hydroxypyridine in bacteria.

2020 ◽  
Vol 86 (19) ◽  
Author(s):  
Haixia Wang ◽  
Xiaoyu Wang ◽  
Hao Ren ◽  
Xuejun Wang ◽  
Zhenmei Lu

ABSTRACT 3-Hydroxypyridine (3HP) is an important natural pyridine derivative. Ensifer adhaerens HP1 can utilize 3HP as its sole sources of carbon, nitrogen, and energy to grow, but the genes responsible for the degradation of 3HP remain unknown. In this study, we predicted that a gene cluster, designated 3hpd, might be responsible for the degradation of 3HP. The analysis showed that the initial hydroxylation of 3HP in E. adhaerens HP1 was catalyzed by a four-component dehydrogenase (HpdA1A2A3A4) and led to the formation of 2,5-dihydroxypyridine (2,5-DHP). In addition, the SRPBCC component in HpdA existed as a separate subunit, which is different from other SRPBCC-containing molybdohydroxylases acting on N-heterocyclic aromatic compounds. Moreover, the results demonstrated that the phosphoenolpyruvate (PEP)-utilizing protein and pyruvate-phosphate dikinase were involved in the HpdA activity, and the presence of the gene cluster 3hpd was discovered in the genomes of diverse microbial strains. Our findings provide a better understanding of the microbial degradation of pyridine derivatives in nature and indicated that further research on the origin of the discovered four-component dehydrogenase with a separate SRPBCC domain and the function of PEP-utilizing protein and pyruvate-phosphate dikinase might be of great significance. IMPORTANCE 3-Hydroxypyridine is an important building block for the synthesis of drugs, herbicides, and antibiotics. Although the microbial degradation of 3-hydroxypyridine has been studied for many years, the molecular mechanisms remain unclear. Here, we show that 3hpd is responsible for the catabolism of 3-hydroxypyridine. The 3hpd gene cluster was found to be widespread in Actinobacteria, Rubrobacteria, Thermoleophilia, and Alpha-, Beta-, and Gammaproteobacteria, and the genetic organization of the 3hpd gene clusters in these bacteria shows high diversity. Our findings provide new insight into the catabolism of 3-hydroxypyridine in bacteria.


2019 ◽  
Author(s):  
Jiguo Qiu ◽  
Lingling Zhao ◽  
Siqiong Xu ◽  
Qing Chen ◽  
Le Chen ◽  
...  

AbstractPicolinic acid (PA) is a natural toxic pyridine derivative. Microorganisms can degrade and utilize PA for growth. However, the full metabolic pathway and its physiological and genetic foundation remain unknown. In this study, we identified thepicgene cluster responsible for the complete degradation of PA fromAlcaligenes faecalisJQ135. PA was initially 6-hydroxylated into 6-hydroxypicolinic acid (6HPA) by PA dehydrogenase (PicA). 6HPA was then 3-hydroxylated by a four-component 6HPA monooxygenase (PicB) to form 3,6-dihydroxypicolinic acid (3,6DHPA), which was then converted into 2,5-dihydroxypyridine (2,5DHP) by a decarboxylase (PicC). The 2,5DHP was further degraded into fumaric acid, through PicD (2,5DHP dioxygenase), PicE (N-formylmaleamic acid deformylase), PicF (maleamic acid amidohydrolase), and PicG (maleic acid isomerase). Homologouspicgene clusters with diverse organizations were found to be widely distributed inα-,β-, andγ-Proteobacteria. Our findings provide new insights into the microbial metabolism of environmental toxic pyridine derivatives.ImportancePicolinic acid is a common metabolite of L-tryptophan and some aromatic compounds and is an important intermediate of industrial concern. Although the microbial degradation/detoxification of picolinic acid has been studied for over 50 years, the underlying molecular mechanisms are still unknown. Here, we show thepicgene cluster responsible for the complete degradation of picolinic acid into the tricarboxylic acid cycle. This gene cluster was found to be widespread in otherα-,β-, andγ-Proteobacteria. These findings provide new perspective for understanding the mechanisms of picolinic acid biodegradation in bacteria.


2019 ◽  
Vol 201 (16) ◽  
Author(s):  
Jiguo Qiu ◽  
Lingling Zhao ◽  
Siqiong Xu ◽  
Qing Chen ◽  
Le Chen ◽  
...  

ABSTRACTPicolinic acid (PA) is a natural toxic pyridine derivative. Microorganisms can degrade and utilize PA for growth. However, the full catabolic pathway of PA and its physiological and genetic foundation remain unknown. In this study, we identified a gene cluster, designatedpicRCEDFB4B3B2B1A1A2A3, responsible for the degradation of PA fromAlcaligenes faecalisJQ135. Our results suggest that PA degradation pathway occurs as follows: PA was initially 6-hydroxylated to 6-hydroxypicolinic acid (6HPA) by PicA (a PA dehydrogenase). 6HPA was then 3-hydroxylated by PicB, a four-component 6HPA monooxygenase, to form 3,6-dihydroxypicolinic acid (3,6DHPA), which was then converted into 2,5-dihydroxypyridine (2,5DHP) by the decarboxylase PicC. 2,5DHP was further degraded to fumaric acid through PicD (2,5DHP 5,6-dioxygenase), PicE (N-formylmaleamic acid deformylase), PicF (maleamic acid amidohydrolase), and PicG (maleic acid isomerase). Homologouspicgene clusters with diverse organizations were found to be widely distributed inAlpha-,Beta-, andGammaproteobacteria. Our findings provide new insights into the microbial catabolism of environmental toxic pyridine derivatives.IMPORTANCEPicolinic acid is a common metabolite ofl-tryptophan and some aromatic compounds and is an important intermediate in organic chemical synthesis. Although the microbial degradation/detoxification of picolinic acid has been studied for over 50 years, the underlying molecular mechanisms are still unknown. Here, we show that thepicgene cluster is responsible for the complete degradation of picolinic acid. Thepicgene cluster was found to be widespread in otherAlpha-,Beta-, andGammaproteobacteria. These findings provide a new perspective for understanding the catabolic mechanisms of picolinic acid in bacteria.


2019 ◽  
Vol 85 (12) ◽  
Author(s):  
Xinyu Lu ◽  
Weiwei Wang ◽  
Lige Zhang ◽  
Haiyang Hu ◽  
Ping Xu ◽  
...  

ABSTRACTN,N-Dimethylformamide (DMF) is one of the most common xenobiotic chemicals, and it can be easily emitted into the environment, where it causes harm to human beings. Herein, an efficient DMF-degrading strain, DM1, was isolated and identified asMethylobacteriumsp. This strain can use DMF as the sole source of carbon and nitrogen. Whole-genome sequencing of strain DM1 revealed that it has a 5.66-Mbp chromosome and a 200-kbp megaplasmid. The plasmid pLVM1 specifically harbors the genes essential for the initial steps of DMF degradation, and the chromosome carries the genes facilitating subsequent methylotrophic metabolism. Through analysis of the transcriptome sequencing data, the complete mineralization pathway and redundant gene clusters of DMF degradation were elucidated. The dimethylformamidase (DMFase) gene was heterologously expressed, and DMFase was purified and characterized. Plasmid pLVM1 is catabolically crucial for DMF utilization, as evidenced by the phenotype identification of the plasmid-free strain. This study systematically elucidates the molecular mechanisms of DMF degradation byMethylobacterium.IMPORTANCEDMF is a hazardous pollutant that has been used in the chemical industry, pharmaceutical manufacturing, and agriculture. Biodegradation as a method for removing DMF has received increasing attention. Here, we identified an efficient DMF degrader,Methylobacteriumsp. strain DM1, and characterized the complete DMF mineralization pathway and enzymatic properties of DMFase in this strain. This study provides insights into the molecular mechanisms and evolutionary advantage of DMF degradation facilitated by plasmid pLVM1 and redundant genes in strain DM1, suggesting the emergence of new ecotypes ofMethylobacterium.


2014 ◽  
Vol 80 (19) ◽  
pp. 6212-6222 ◽  
Author(s):  
Jun Min ◽  
Jun-Jie Zhang ◽  
Ning-Yi Zhou

ABSTRACTBurkholderiasp. strain SJ98 (DSM 23195) utilizes 2-chloro-4-nitrophenol (2C4NP) orpara-nitrophenol (PNP) as a sole source of carbon and energy. Here, by genetic and biochemical analyses, a 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with chloro-1,4-benzoquinone (CBQ) as an intermediate. Reverse transcription-PCR analysis showed that all of thepnpgenes in thepnpABA1CDEFcluster were located in a single operon, which is significantly different from the genetic organization of all other previously reported PNP degradation gene clusters, in which the structural genes were located in three different operons. All of the Pnp proteins were purified to homogeneity as His-tagged proteins. PnpA, a PNP 4-monooxygenase, was found to be able to catalyze the monooxygenation of 2C4NP to CBQ. PnpB, a 1,4-benzoquinone reductase, has the ability to catalyze the reduction of CBQ to chlorohydroquinone. Moreover, PnpB is also able to enhance PnpA activityin vitroin the conversion of 2C4NP to CBQ. Genetic analyses indicated thatpnpAplays an essential role in the degradation of both 2C4NP and PNP by gene knockout and complementation. In addition to being responsible for the lower pathway of PNP catabolism, PnpCD, PnpE, and PnpF were also found to be likely involved in that of 2C4NP catabolism. These results indicated that the catabolism of 2C4NP and that of PNP share the same gene cluster in strain SJ98. These findings fill a gap in our understanding of the microbial degradation of 2C4NP at the molecular and biochemical levels.


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1859-1867 ◽  
Author(s):  
Karin Denger ◽  
Jürgen Ruff ◽  
David Schleheck ◽  
Alasdair M. Cook

The Gram-positive bacteria Rhodococcus opacus ISO-5 and Rhodococcus sp. RHA1 utilized taurine (2-aminoethanesulfonate) as the sole source of carbon or of nitrogen or of sulfur for growth. Different gene clusters and enzymes were active under these different metabolic situations. Under carbon- or nitrogen-limited conditions three enzymes were induced, though to different levels: taurine-pyruvate aminotransferase (Tpa), alanine dehydrogenase (Ald) and sulfoacetaldehyde acetyltransferase (Xsc). The specific activities of these enzymes in R. opacus ISO-5 were sufficient to explain the growth rates under the different conditions. These three enzymes were purified and characterized, and the nature of each reaction was confirmed. Analyses of the genome of Rhodococcus sp. RHA1 revealed a gene cluster, tauR-ald-tpa, putatively encoding regulation and oxidation of taurine, located 20 kbp from the xsc gene and separate from two candidate phosphotransacetylase (pta) genes, as well as many candidate ABC transporters (tauBC). PCR primers allowed the amplification and sequencing of the tauR-ald-tpa gene cluster and the xsc gene in R. opacus ISO-5. The N-terminal sequences of the three tested proteins matched the derived amino acid sequences of the corresponding genes. The sequences of the four genes found in each Rhodococcus strain shared high degrees of identity (>95 % identical positions). RT-PCR studies proved transcription of the xsc gene when taurine was the source of carbon or of nitrogen. Under sulfur-limited conditions no xsc mRNA was generated and no Xsc was detected. Taurine dioxygenase (TauD), the enzyme catalysing the anticipated desulfonative reaction when taurine sulfur is assimilated, was presumed to be present because oxygen-dependent taurine disappearance was demonstrated with taurine-grown cells only. A putative tauD gene (with three other candidates) was detected in strain ISO-5. Regulation of the different forms of metabolism of taurine remains to be elucidated.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiayi Li ◽  
Wenping Zhang ◽  
Ziqiu Lin ◽  
Yaohua Huang ◽  
Pankaj Bhatt ◽  
...  

Diuron (DUR) is a phenylurea herbicide widely used for the effective control of most annual and perennial weeds in farming areas. The extensive use of DUR has led to its widespread presence in soil, sediment, and aquatic environments, which poses a threat to non-target crops, animals, humans, and ecosystems. Therefore, the removal of DUR from contaminated environments has been a hot topic for researchers in recent decades. Bioremediation seldom leaves harmful intermediate metabolites and is emerging as the most effective and eco-friendly strategy for removing DUR from the environment. Microorganisms, such as bacteria, fungi, and actinomycetes, can use DUR as their sole source of carbon. Some of them have been isolated, including organisms from the bacterial genera Arthrobacter, Bacillus, Vagococcus, Burkholderia, Micrococcus, Stenotrophomonas, and Pseudomonas and fungal genera Aspergillus, Pycnoporus, Pluteus, Trametes, Neurospora, Cunninghamella, and Mortierella. A number of studies have investigated the toxicity and fate of DUR, its degradation pathways and metabolites, and DUR-degrading hydrolases and related genes. However, few reviews have focused on the microbial degradation and biochemical mechanisms of DUR. The common microbial degradation pathway for DUR is via transformation to 3,4-dichloroaniline, which is then metabolized through two different metabolic pathways: dehalogenation and hydroxylation, the products of which are further degraded via cooperative metabolism. Microbial degradation hydrolases, including PuhA, PuhB, LibA, HylA, Phh, Mhh, and LahB, provide new knowledge about the underlying pathways governing DUR metabolism. The present review summarizes the state-of-the-art knowledge regarding (1) the environmental occurrence and toxicity of DUR, (2) newly isolated and identified DUR-degrading microbes and their enzymes/genes, and (3) the bioremediation of DUR in soil and water environments. This review further updates the recent knowledge on bioremediation strategies with a focus on the metabolic pathways and molecular mechanisms involved in the bioremediation of DUR.


2001 ◽  
Vol 14 (12) ◽  
pp. 1426-1435 ◽  
Author(s):  
Brenda K. Scholz-Schroeder ◽  
Jonathan D. Soule ◽  
Shi-En Lu ◽  
Ingeborg Grgurina ◽  
Dennis C. Gross

Genetic and phenotypic mapping of an approximately 145-kb DraI fragment of Pseudomonas syringae pv. syringae strain B301D determined that the syringomycin (syr) and syringopeptin (syp) gene clusters are localized to this fragment. The syr and syp gene clusters encompass approximately 55 kb and approximately 80 kb, respectively. Both phytotoxins are synthesized by a thiotemplate mechanism of biosynthesis, requiring large multienzymatic proteins called peptide synthetases. Genes encoding peptide synthetases were identified within the syr and syp gene clusters, accounting for 90% of the DraI fragment. In addition, genes encoding regulatory and secretion proteins were localized to the DraI fragment. In particular, the salA gene, encoding a regulatory element responsible for syringomycin production and lesion formation in P. syringae pv. syringae strain B728a, was localized to the syr gene cluster. A putative ATP-binding cassette (ABC) transporter homolog was determined to be physically located in the syp gene cluster, but phenotypically affects production of both phytotoxins. Preliminary size estimates of the syr and syp gene clusters indicate that they represent two of the largest nonribosomal peptide synthetase gene clusters. Together, the syr and syp gene clusters encompass approximately 135 kb of DNA and may represent a genomic island in P. syringae pv. syringae that contributes to virulence in plant hosts.


2012 ◽  
Vol 58 (4) ◽  
pp. 413-425 ◽  
Author(s):  
Sarah Goomeshi Nobary ◽  
Susan E. Jensen

The production of clavam metabolites has been studied previously in Streptomyces clavuligerus , a species that produces clavulanic acid as well as 4 other clavam compounds, but the late steps of the pathway leading to the specific end products are unclear. The present study compared the clavam biosynthetic gene cluster in Streptomyces antibioticus , chosen because it produces only 2 clavam metabolites and no clavulanic acid, with that of S. clavuligerus. A cosmid library of S. antibioticus genomic DNA was screened with a clavaminate synthase-specific probe based on the corresponding genes from S. clavuligerus, and 1 of the hybridizing cosmids was sequenced in full. A clavam gene cluster was identified that shows similarities to that of S. clavuligerus but also contains a number of novel genes. Knock-out mutation of the clavaminate synthase gene abolished clavam production in S. antibioticus, confirming the identity of the gene cluster. Knock-out mutation of a novel gene encoding an apparent oxidoreductase also abolished clavam production. A potential clavam biosynthetic pathway consistent with the genes in the cluster and the metabolites produced by S. antibioticus, and correspondingly different from that of S. clavuligerus, is proposed.


2017 ◽  
Author(s):  
Jiguo Qiu ◽  
Bin Liu ◽  
Lingling Zhao ◽  
Yanting Zhang ◽  
Dan Cheng ◽  
...  

Abstract5-hydroxypicolinic acid (5HPA) is a natural pyridine derivative that can be microbially degraded. However, the physiological, biochemical, and genetic foundation of the microbial catabolism of 5HPA remains unknown. In this study, a gene clusterhpa(which is involved in degradation of 5HPA inAlcaligenes faecalisJQ135) was cloned and HpaM was identified as a novel monocomponent FAD-dependent monooxygenase. HpaM shared a sequence only 31% similarity with the most related protein 6-hydroxynicotinate 3-monooxygenase (NicC) ofPseudomonas putidaKT2440.hpaMwas heterologously expressed inE. coliBL21(DE3), and the recombinant HpaM was purified via Ni-affinity chromatography. HpaM catalyzed the 2-decarboxylative hydroxylation of 5-HPA, thus generating 2,5-dihydroxypyridine (2,5-DPH). Monooxygenase activity was only detected in the presence of FAD and NADH, but not of FMN and NADPH. The apparentKmvalues of HpaM toward 5HPA and NADH were 45.4 μ and 37.8 μ, respectively. Results of gene deletion and complementation showed thathpaMwas essential for 5HPA degradation inAlcaligenes faecalisJQ135.ImportancePyridine derivatives are ubiquitous in nature and important chemical materials that are currently widely used in agriculture, pharmaceutical, and chemical industries. Thus, the microbial degradation and transformation mechanisms of pyridine derivatives received considerable attention. Decarboxylative hydroxylation was an important degradation process in pyridine derivatives, and previously reported decarboxylative hydroxylations happened in the C3 of the pyridine ring. In this study, we cloned the gene clusterhpa, which is responsible for 5HPA degradation inAlcaligenes faecalisJQ135, thus identifying a novel monocomponent FAD-dependent monooxygenase HpaM. Unlike 3-decarboxylative monooxygenases, HpaM catalyzed decarboxylative hydroxylation in the C2 of the pyridine ring in 5-hydroxypicolinic acid. These findings deepen our understanding of the molecular mechanism of microbial degradation of pyridine derivatives. Furthermore, HpaM offers potential for applications to transform useful pyridine derivatives.


Sign in / Sign up

Export Citation Format

Share Document