scholarly journals 3-Hydroxypyridine Dehydrogenase HpdA Is Encoded by a Novel Four-Component Gene Cluster and Catalyzes the First Step of 3-Hydroxypyridine Catabolism in Ensifer adhaerens HP1

2020 ◽  
Vol 86 (19) ◽  
Author(s):  
Haixia Wang ◽  
Xiaoyu Wang ◽  
Hao Ren ◽  
Xuejun Wang ◽  
Zhenmei Lu

ABSTRACT 3-Hydroxypyridine (3HP) is an important natural pyridine derivative. Ensifer adhaerens HP1 can utilize 3HP as its sole sources of carbon, nitrogen, and energy to grow, but the genes responsible for the degradation of 3HP remain unknown. In this study, we predicted that a gene cluster, designated 3hpd, might be responsible for the degradation of 3HP. The analysis showed that the initial hydroxylation of 3HP in E. adhaerens HP1 was catalyzed by a four-component dehydrogenase (HpdA1A2A3A4) and led to the formation of 2,5-dihydroxypyridine (2,5-DHP). In addition, the SRPBCC component in HpdA existed as a separate subunit, which is different from other SRPBCC-containing molybdohydroxylases acting on N-heterocyclic aromatic compounds. Moreover, the results demonstrated that the phosphoenolpyruvate (PEP)-utilizing protein and pyruvate-phosphate dikinase were involved in the HpdA activity, and the presence of the gene cluster 3hpd was discovered in the genomes of diverse microbial strains. Our findings provide a better understanding of the microbial degradation of pyridine derivatives in nature and indicated that further research on the origin of the discovered four-component dehydrogenase with a separate SRPBCC domain and the function of PEP-utilizing protein and pyruvate-phosphate dikinase might be of great significance. IMPORTANCE 3-Hydroxypyridine is an important building block for the synthesis of drugs, herbicides, and antibiotics. Although the microbial degradation of 3-hydroxypyridine has been studied for many years, the molecular mechanisms remain unclear. Here, we show that 3hpd is responsible for the catabolism of 3-hydroxypyridine. The 3hpd gene cluster was found to be widespread in Actinobacteria, Rubrobacteria, Thermoleophilia, and Alpha-, Beta-, and Gammaproteobacteria, and the genetic organization of the 3hpd gene clusters in these bacteria shows high diversity. Our findings provide new insight into the catabolism of 3-hydroxypyridine in bacteria.

2020 ◽  
Author(s):  
Haixia Wang ◽  
Xiaoyu Wang ◽  
Hao Ren ◽  
Xuejun Wang ◽  
Zhenmei Lu

Abstract3-Hydroxypyridine (3HP) is an important natural pyridine derivative. Ensifer adhaerens HP1 can utilize 3HP as the sole source of carbon, nitrogen and energy to grow. However, the genes responsible for the degradation of 3HP remain unknown. In this study, we predicted that a gene cluster, designated 3hpd, may be responsible for the degradation of 3HP. The initial hydroxylation of 3HP is catalyzed by a four-component dehydrogenase (HpdA1A2A3A4), leading to the formation of 2,5-dihydroxypyridine (2,5-DHP) in E. adhaerens HP1. In addition, the SRPBCC component in HpdA existed as a separate subunit, which is different from other SRPBCC-containing molybdohydroxylases acting on N-heterocyclic aromatic compounds. Our findings provide a better understanding of the microbial degradation of pyridine derivatives in nature. Additionally, research on the origin of the discovered four-component dehydrogenase with a separate SRPBCC domain may be of great significance.Importance3-Hydroxypyridine is an important building block for synthesizing drugs, herbicides and antibiotics. Although the microbial degradation of 3-hydroxypyridine has been studied for many years, the molecular mechanisms remain unclear. Here, we show that 3hpd is responsible for the catabolism of 3-hydroxypyridine. The 3hpd gene cluster was found to be widespread in Actinobacteria, Rubrobacteria, Thermoleophilia, and Alpha-, Beta-, and Gammaproteobacteria, and the genetic organization of the 3hpd gene clusters in these bacteria showed high diversity. Our findings provide new insight into the catabolism of 3-hydroxypyridine in bacteria.


2019 ◽  
Vol 201 (16) ◽  
Author(s):  
Jiguo Qiu ◽  
Lingling Zhao ◽  
Siqiong Xu ◽  
Qing Chen ◽  
Le Chen ◽  
...  

ABSTRACTPicolinic acid (PA) is a natural toxic pyridine derivative. Microorganisms can degrade and utilize PA for growth. However, the full catabolic pathway of PA and its physiological and genetic foundation remain unknown. In this study, we identified a gene cluster, designatedpicRCEDFB4B3B2B1A1A2A3, responsible for the degradation of PA fromAlcaligenes faecalisJQ135. Our results suggest that PA degradation pathway occurs as follows: PA was initially 6-hydroxylated to 6-hydroxypicolinic acid (6HPA) by PicA (a PA dehydrogenase). 6HPA was then 3-hydroxylated by PicB, a four-component 6HPA monooxygenase, to form 3,6-dihydroxypicolinic acid (3,6DHPA), which was then converted into 2,5-dihydroxypyridine (2,5DHP) by the decarboxylase PicC. 2,5DHP was further degraded to fumaric acid through PicD (2,5DHP 5,6-dioxygenase), PicE (N-formylmaleamic acid deformylase), PicF (maleamic acid amidohydrolase), and PicG (maleic acid isomerase). Homologouspicgene clusters with diverse organizations were found to be widely distributed inAlpha-,Beta-, andGammaproteobacteria. Our findings provide new insights into the microbial catabolism of environmental toxic pyridine derivatives.IMPORTANCEPicolinic acid is a common metabolite ofl-tryptophan and some aromatic compounds and is an important intermediate in organic chemical synthesis. Although the microbial degradation/detoxification of picolinic acid has been studied for over 50 years, the underlying molecular mechanisms are still unknown. Here, we show that thepicgene cluster is responsible for the complete degradation of picolinic acid. Thepicgene cluster was found to be widespread in otherAlpha-,Beta-, andGammaproteobacteria. These findings provide a new perspective for understanding the catabolic mechanisms of picolinic acid in bacteria.


2019 ◽  
Author(s):  
Jiguo Qiu ◽  
Lingling Zhao ◽  
Siqiong Xu ◽  
Qing Chen ◽  
Le Chen ◽  
...  

AbstractPicolinic acid (PA) is a natural toxic pyridine derivative. Microorganisms can degrade and utilize PA for growth. However, the full metabolic pathway and its physiological and genetic foundation remain unknown. In this study, we identified thepicgene cluster responsible for the complete degradation of PA fromAlcaligenes faecalisJQ135. PA was initially 6-hydroxylated into 6-hydroxypicolinic acid (6HPA) by PA dehydrogenase (PicA). 6HPA was then 3-hydroxylated by a four-component 6HPA monooxygenase (PicB) to form 3,6-dihydroxypicolinic acid (3,6DHPA), which was then converted into 2,5-dihydroxypyridine (2,5DHP) by a decarboxylase (PicC). The 2,5DHP was further degraded into fumaric acid, through PicD (2,5DHP dioxygenase), PicE (N-formylmaleamic acid deformylase), PicF (maleamic acid amidohydrolase), and PicG (maleic acid isomerase). Homologouspicgene clusters with diverse organizations were found to be widely distributed inα-,β-, andγ-Proteobacteria. Our findings provide new insights into the microbial metabolism of environmental toxic pyridine derivatives.ImportancePicolinic acid is a common metabolite of L-tryptophan and some aromatic compounds and is an important intermediate of industrial concern. Although the microbial degradation/detoxification of picolinic acid has been studied for over 50 years, the underlying molecular mechanisms are still unknown. Here, we show thepicgene cluster responsible for the complete degradation of picolinic acid into the tricarboxylic acid cycle. This gene cluster was found to be widespread in otherα-,β-, andγ-Proteobacteria. These findings provide new perspective for understanding the mechanisms of picolinic acid biodegradation in bacteria.


2014 ◽  
Vol 58 (10) ◽  
pp. 6185-6196 ◽  
Author(s):  
Marius Spohn ◽  
Norbert Kirchner ◽  
Andreas Kulik ◽  
Angelika Jochim ◽  
Felix Wolf ◽  
...  

ABSTRACTThe emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new antibacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary metabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize medically important products isAmycolatopsis. However,Amycolatopsis japonicumdoes not produce an antibiotic under standard laboratory conditions. In contrast to mostAmycolatopsisstrains,A. japonicumis genetically tractable with different methods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of balhimycin biosynthesis, thebbrgene fromAmycolatopsis balhimycina(bbrAba), intoA. japonicum. This resulted in the production of an antibiotically active compound. Following whole-genome sequencing ofA. japonicum, 29 cryptic gene clusters were identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR) spectroscopy confirmed thein silicoprediction that the recombinantA. japonicum/pRM4-bbrAbasynthesizes ristomycin A.


2013 ◽  
Vol 79 (12) ◽  
pp. 3856-3859 ◽  
Author(s):  
Zhen Zhang ◽  
Hannamari Hintsa ◽  
Ying Chen ◽  
Hannu Korkeala ◽  
Miia Lindström

ABSTRACTA collection of 36Clostridium botulinumtype E strains was examined by pulsed-field gel electrophoresis (PFGE) and Southern hybridization with probes targeted tobotEandorfX1in the neurotoxin gene cluster. Three strains were found to contain neurotoxin subtype E1 gene clusters in large plasmids of about 146 kb in size.


2020 ◽  
Vol 202 (10) ◽  
Author(s):  
Yannick R. Brunet ◽  
Christophe S. Bernard ◽  
Eric Cascales

ABSTRACT The type VI secretion system (T6SS) is a weapon for delivering effectors into target cells that is widespread in Gram-negative bacteria. The T6SS is a highly versatile machine, as it can target both eukaryotic and prokaryotic cells, and it has been proposed that T6SSs are adapted to the specific needs of each bacterium. The expression of T6SS gene clusters and the activation of the secretion apparatus are therefore tightly controlled. In enteroaggregative Escherichia coli (EAEC), the sci1 T6SS gene cluster is subject to a complex regulation involving both the ferric uptake regulator (Fur) and DNA adenine methylase (Dam)-dependent DNA methylation. In this study, an additional, internal, promoter was identified within the sci1 gene cluster using +1 transcriptional mapping. Further analyses demonstrated that this internal promoter is controlled by a mechanism strictly identical to that of the main promoter. The Fur binding box overlaps the −10 transcriptional element and a Dam methylation site, GATC-32. Hence, the expression of the distal sci1 genes is repressed and the GATC-32 site is protected from methylation in iron-rich conditions. The Fur-dependent protection of GATC-32 was confirmed by an in vitro methylation assay. In addition, the methylation of GATC-32 negatively impacted Fur binding. The expression of the sci1 internal promoter is therefore controlled by iron availability through Fur regulation, whereas Dam-dependent methylation maintains a stable ON expression in iron-limited conditions. IMPORTANCE Bacteria use weapons to deliver effectors into target cells. One of these weapons, the type VI secretion system (T6SS), assembles a contractile tail acting as a spring to propel a toxin-loaded needle. Its expression and activation therefore need to be tightly regulated. Here, we identified an internal promoter within the sci1 T6SS gene cluster in enteroaggregative E. coli. We show that this internal promoter is controlled by Fur and Dam-dependent methylation. We further demonstrate that Fur and Dam compete at the −10 transcriptional element to finely tune the expression of T6SS genes. We propose that this elegant regulatory mechanism allows the optimum production of the T6SS in conditions where enteroaggregative E. coli encounters competing species.


2014 ◽  
Vol 80 (19) ◽  
pp. 6212-6222 ◽  
Author(s):  
Jun Min ◽  
Jun-Jie Zhang ◽  
Ning-Yi Zhou

ABSTRACTBurkholderiasp. strain SJ98 (DSM 23195) utilizes 2-chloro-4-nitrophenol (2C4NP) orpara-nitrophenol (PNP) as a sole source of carbon and energy. Here, by genetic and biochemical analyses, a 2C4NP catabolic pathway different from those of all other 2C4NP utilizers was identified with chloro-1,4-benzoquinone (CBQ) as an intermediate. Reverse transcription-PCR analysis showed that all of thepnpgenes in thepnpABA1CDEFcluster were located in a single operon, which is significantly different from the genetic organization of all other previously reported PNP degradation gene clusters, in which the structural genes were located in three different operons. All of the Pnp proteins were purified to homogeneity as His-tagged proteins. PnpA, a PNP 4-monooxygenase, was found to be able to catalyze the monooxygenation of 2C4NP to CBQ. PnpB, a 1,4-benzoquinone reductase, has the ability to catalyze the reduction of CBQ to chlorohydroquinone. Moreover, PnpB is also able to enhance PnpA activityin vitroin the conversion of 2C4NP to CBQ. Genetic analyses indicated thatpnpAplays an essential role in the degradation of both 2C4NP and PNP by gene knockout and complementation. In addition to being responsible for the lower pathway of PNP catabolism, PnpCD, PnpE, and PnpF were also found to be likely involved in that of 2C4NP catabolism. These results indicated that the catabolism of 2C4NP and that of PNP share the same gene cluster in strain SJ98. These findings fill a gap in our understanding of the microbial degradation of 2C4NP at the molecular and biochemical levels.


2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Xu-Liang Bu ◽  
Jing-Yi Weng ◽  
Bei-Bei He ◽  
Min-Juan Xu ◽  
Jun Xu

ABSTRACTThe pleiotropic transcriptional regulator AdpA positively controls morphological differentiation and regulates secondary metabolism in mostStreptomycesspecies.Streptomyces xiamenensis318 has a linear chromosome 5.96 Mb in size. How AdpA affects secondary metabolism and morphological differentiation in such a naturally minimized genomic background is unknown. Here, we demonstrated that AdpASx, an AdpA orthologue inS. xiamenensis, negatively regulates cell growth and sporulation and bidirectionally regulates the biosynthesis of xiamenmycin and polycyclic tetramate macrolactams (PTMs) inS. xiamenensis318. Overexpression of theadpASxgene inS. xiamenensis318 had negative effects on morphological differentiation and resulted in reduced transcription of putativessgA,ftsZ,ftsH,amfC,whiB,wblA1,wblA2,wblE, and a gene encoding sporulation-associated protein (sxim_29740), whereas the transcription of putativebldDandbldAgenes was upregulated. Overexpression ofadpASxled to significantly enhanced production of xiamenmycin but had detrimental effects on the production of PTMs. As expected, the transcriptional level of theximgene cluster was upregulated, whereas the PTM gene cluster was downregulated. Moreover, AdpASxnegatively regulated the transcription of its own gene. Electrophoretic mobility shift assays revealed that AdpASxcan bind the promoter regions of structural genes of both theximand PTM gene clusters as well as to the promoter regions of genes potentially involved in the cell growth and differentiation ofS. xiamenensis318. We report that an AdpA homologue has negative effects on morphological differentiation inS. xiamenensis318, a finding confirmed when AdpASxwas introduced into the heterologous hostStreptomyces lividansTK24.IMPORTANCEAdpA is a key regulator of secondary metabolism and morphological differentiation inStreptomycesspecies. However, AdpA had not been reported to negatively regulate morphological differentiation. Here, we characterized the regulatory role of AdpASxinStreptomyces xiamenensis318, which has a naturally streamlined genome. In this strain, AdpASxnegatively regulated cell growth and morphological differentiation by directly controlling genes associated with these functions. AdpASxalso bidirectionally controlled the biosynthesis of xiamenmycin and PTMs by directly regulating their gene clusters rather than through other regulators. Our findings provide additional evidence for the versatility of AdpA in regulating morphological differentiation and secondary metabolism inStreptomyces.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Yuki Saito ◽  
Akira Shigehisa ◽  
Yohei Watanabe ◽  
Naoki Tsukuda ◽  
Kaoru Moriyama-Ohara ◽  
...  

ABSTRACT Arabinoxylan hydrolysates (AXH) are the hydrolyzed products of the major components of the dietary fiber arabinoxylan. AXH include diverse oligosaccharides varying in xylose polymerization and side residue modifications with arabinose at the O-2 and/or O-3 position of the xylose unit. Previous studies have reported that AXH exhibit prebiotic properties on gut bifidobacteria; moreover, several adult-associated bifidobacterial species (e.g., Bifidobacterium adolescentis and Bifidobacterium longum subsp. longum) are known to utilize AXH. In this study, we tried to elucidate the molecular mechanisms of AXH utilization by Bifidobacterium pseudocatenulatum, which is a common bifidobacterial species found in adult feces. We performed transcriptomic analysis of B. pseudocatenulatum YIT 4072T, which identified three upregulated gene clusters during AXH utilization. The gene clusters encoded three sets of ATP-binding cassette (ABC) transporters and five enzymes belonging to glycoside hydrolase family 43 (GH43). By characterizing the recombinant proteins, we found that three solute-binding proteins of ABC transporters showed either broad or narrow specificity, two arabinofuranosidases hydrolyzed either single- or double-decorated arabinoxylooligosaccharides, and three xylosidases exhibited functionally identical activity. These data collectively suggest that the transporters and glycoside hydrolases, encoded in the three gene clusters, work together to utilize AXH of different sizes and with different side residue modifications. Thus, our study sheds light on the overall picture of how these proteins collaborate for the utilization of AXH in B. pseudocatenulatum and may explain the predominance of this symbiont species in the adult human gut. IMPORTANCE Bifidobacteria commonly reside in the human intestine and possess abundant genes involved in carbohydrate utilization. Arabinoxylan hydrolysates (AXH) are hydrolyzed products of arabinoxylan, one of the most abundant dietary fibers, and they include xylooligosaccharides and those decorated with arabinofuranosyl residues. The molecular mechanism by which B. pseudocatenulatum, a common bifidobacterial species found in adult feces, utilizes structurally and compositionally variable AXH has yet to be extensively investigated. In this study, we identified three gene clusters (encoding five GH43 enzymes and three solute-binding proteins of ABC transporters) that were upregulated in B. pseudocatenulatum YIT 4072T during AXH utilization. By investigating their substrate specificities, we revealed how these proteins are involved in the uptake and degradation of AXH. These molecular insights may provide a better understanding of how resident bifidobacteria colonize the colon.


2015 ◽  
Vol 197 (15) ◽  
pp. 2536-2544 ◽  
Author(s):  
Letizia Lo Grasso ◽  
Sonia Maffioli ◽  
Margherita Sosio ◽  
Mervyn Bibb ◽  
Anna Maria Puglia ◽  
...  

ABSTRACTThe actinomyceteNonomuraeasp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of dalbavancin. Biosynthesis of A40926 is encoded by thedbvgene cluster, which contains 37 protein-coding sequences that participate in antibiotic biosynthesis, regulation, immunity, and export. In addition to the positive regulatory protein Dbv4, the A40926-biosynthetic gene cluster encodes two additional putative regulators, Dbv3 and Dbv6. Independent mutations in these genes, combined with bioassays and liquid chromatography-mass spectrometry (LC-MS) analyses, demonstrated that Dbv3 and Dbv4 are both required for antibiotic production, while inactivation ofdbv6had no effect. In addition, overexpression ofdbv3led to higher levels of A40926 production. Transcriptional and quantitative reverse transcription (RT)-PCR analyses showed that Dbv4 is essential for the transcription of two operons,dbv14-dbv8anddbv30-dbv35, while Dbv3 positively controls the expression of four monocistronic transcription units (dbv4,dbv29,dbv36, anddbv37) and of six operons (dbv2-dbv1,dbv14-dbv8,dbv17-dbv15,dbv21-dbv20,dbv24-dbv28, anddbv30-dbv35). We propose a complex and coordinated model of regulation in which Dbv3 directly or indirectly activates transcription ofdbv4and controls biosynthesis of 4-hydroxyphenylglycine and the heptapeptide backbone, A40926 export, and some tailoring reactions (mannosylation and hexose oxidation), while Dbv4 directly regulates biosynthesis of 3,5-dihydroxyphenylglycine and other tailoring reactions, including the four cross-links, halogenation, glycosylation, and acylation.IMPORTANCEThis report expands knowledge of the regulatory mechanisms used to control the biosynthesis of the glycopeptide antibiotic A40926 in the actinomyceteNonomuraeasp. strain ATCC 39727. A40926 is the precursor of dalbavancin, approved for treatment of skin infections by Gram-positive bacteria. Therefore, understanding the regulation of its biosynthesis is also of industrial importance. So far, the regulatory mechanisms used to control two other similar glycopeptides (balhimycin and teicoplanin) have been elucidated, and beyond a common step, different clusters seem to have devised different strategies to control glycopeptide production. Thus, our work provides one more example of the pitfalls of deducing regulatory roles from bioinformatic analyses only, even when analyzing gene clusters directing the synthesis of structurally related compounds.


Sign in / Sign up

Export Citation Format

Share Document