scholarly journals Selective Postnatal Excitation of Neocortical Pyramidal Neurons Results in Distinctive Behavioral and Circuit Deficits in Adulthood

Author(s):  
William E. Medendorp ◽  
Akash Pal ◽  
Madison Waddell ◽  
Andreas Björefeldt ◽  
Christopher I. Moore ◽  
...  

SummaryIn leading models of Autism Spectrum Disorder, and in human data, the efficacy of outgoing cortical connectivity transitions from overly exuberant to languid from early development to adulthood. This transition begs the question of whether the early enhancement in excitation might be a common driver, across etiologies, of these symptoms. We directly tested this concept by chemogenetically driving neuronal activity in neocortical neurons during postnatal days 4-14. Hyperexcitation of Emx1-, but not dopamine transporter-, parvalbumin-, or Dlx5/6-expressing neurons led to decreased social interaction and increased grooming activity in adult animals. In vivo optogenetic interrogation in adults revealed decreased baseline but increased stimulus-evoked firing rates of pyramidal neurons, impaired recruitment of inhibitory neurons and reduced cortico-striatal communication. These results directly support the prediction that changed firing in developing circuits irreversibly alters adult circuit function that leads to maladaptive changes in behaviors. This experimental approach offers a valuable platform to study the impact of disruption of developmental neural activity on the formation and function of adult neural circuits and behavior.

1999 ◽  
Vol 81 (4) ◽  
pp. 1531-1547 ◽  
Author(s):  
Alain Destexhe ◽  
Denis Paré

Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. During wakefulness, neocortical neurons are subjected to an intense synaptic bombardment. To assess the consequences of this background activity for the integrative properties of pyramidal neurons, we constrained biophysical models with in vivo intracellular data obtained in anesthetized cats during periods of intense network activity similar to that observed in the waking state. In pyramidal cells of the parietal cortex (area 5–7), synaptic activity was responsible for an approximately fivefold decrease in input resistance ( R in), a more depolarized membrane potential ( V m), and a marked increase in the amplitude of V m fluctuations, as determined by comparing the same cells before and after microperfusion of tetrodotoxin (TTX). The model was constrained by measurements of R in, by the average value and standard deviation of the V m measured from epochs of intense synaptic activity recorded with KAc or KCl-filled pipettes as well as the values measured in the same cells after TTX. To reproduce all experimental results, the simulated synaptic activity had to be of relatively high frequency (1–5 Hz) at excitatory and inhibitory synapses. In addition, synaptic inputs had to be significantly correlated (correlation coefficient ∼0.1) to reproduce the amplitude of V m fluctuations recorded experimentally. The presence of voltage-dependent K+ currents, estimated from current-voltage relations after TTX, affected these parameters by <10%. The model predicts that the conductance due to synaptic activity is 7–30 times larger than the somatic leak conductance to be consistent with the approximately fivefold change in R in. The impact of this massive increase in conductance on dendritic attenuation was investigated for passive neurons and neurons with voltage-dependent Na+/K+ currents in soma and dendrites. In passive neurons, correlated synaptic bombardment had a major influence on dendritic attenuation. The electrotonic attenuation of simulated synaptic inputs was enhanced greatly in the presence of synaptic bombardment, with distal synapses having minimal effects at the soma. Similarly, in the presence of dendritic voltage-dependent currents, the convergence of hundreds of synaptic inputs was required to evoke action potentials reliably. In this case, however, dendritic voltage-dependent currents minimized the variability due to input location, with distal apical synapses being as effective as synapses on basal dendrites. In conclusion, this combination of intracellular and computational data suggests that, during low-amplitude fast electroencephalographic activity, neocortical neurons are bombarded continuously by correlated synaptic inputs at high frequency, which significantly affect their integrative properties. A series of predictions are suggested to test this model.


2020 ◽  
Vol 56 (2) ◽  
pp. 119-122
Author(s):  
Doris Adams Hill ◽  
Theoni Mantzoros ◽  
Jonté C. Taylor

Special educators are often considered the experts in their school when it comes to developing functional behavior assessments (FBA) and behavior intervention plans (BIP), yet rarely are they trained much beyond basic antecedents, behaviors, and consequences (ABC). This column discusses concepts that will expand special education professionals’ knowledge to make better decisions regarding interventions for the students they serve. Specifically, the focus is on motivating operations (MO) and function-based interventions and the implications of these on behavior. Knowledge of the concept of MOs can enhance a teacher’s ability to provide evidence-based interventions and more fully developed behavioral interventions for students in their purview.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Ellegood ◽  
S. P. Petkova ◽  
A. Kinman ◽  
L. R. Qiu ◽  
A. Adhikari ◽  
...  

Abstract Background One of the causal mechanisms underlying neurodevelopmental disorders (NDDs) is chromatin modification and the genes that regulate chromatin. AT-rich interactive domain 1B (ARID1B), a chromatin modifier, has been linked to autism spectrum disorder and to affect rare and inherited genetic variation in a broad set of NDDs. Methods A novel preclinical mouse model of Arid1b deficiency was created and validated to characterize and define neuroanatomical, behavioral and transcriptional phenotypes. Neuroanatomy was assessed ex vivo in adult animals and in vivo longitudinally from birth to adulthood. Behavioral testing was also performed throughout development and tested all aspects of motor, learning, sociability, repetitive behaviors, seizure susceptibility, and general milestones delays. Results We validated decreased Arid1b mRNA and protein in Arid1b+/− mice, with signatures of increased axonal and synaptic gene expression, decreased transcriptional regulator and RNA processing expression in adult Arid1b+/− cerebellum. During neonatal development, Arid1b+/− mice exhibited robust impairments in ultrasonic vocalizations (USVs) and metrics of developmental growth. In addition, a striking sex effect was observed neuroanatomically throughout development. Behaviorally, as adults, Arid1b+/− mice showed low motor skills in open field exploration and normal three-chambered approach. Arid1b+/− mice had learning and memory deficits in novel object recognition but not in visual discrimination and reversal touchscreen tasks. Social interactions in the male–female social dyad with USVs revealed social deficits on some but not all parameters. No repetitive behaviors were observed. Brains of adult Arid1b+/− mice had a smaller cerebellum and a larger hippocampus and corpus callosum. The corpus callosum increase seen here contrasts previous reports which highlight losses in corpus callosum volume in mice and humans. Limitations The behavior and neuroimaging analyses were done on separate cohorts of mice, which did not allow a direct correlation between the imaging and behavioral findings, and the transcriptomic analysis was exploratory, with no validation of altered expression beyond Arid1b. Conclusions This study represents a full validation and investigation of a novel model of Arid1b+/− haploinsufficiency throughout development and highlights the importance of examining both sexes throughout development in NDDs.


2008 ◽  
Vol 99 (3) ◽  
pp. 1394-1407 ◽  
Author(s):  
Sarah Potez ◽  
Matthew E. Larkum

Understanding the impact of active dendritic properties on network activity in vivo has so far been restricted to studies in anesthetized animals. However, to date no study has been made to determine the direct effect of the anesthetics themselves on dendritic properties. Here, we investigated the effects of three types of anesthetics commonly used for animal experiments (urethane, pentobarbital and ketamine/xylazine). We investigated the generation of calcium spikes, the propagation of action potentials (APs) along the apical dendrite and the somatic firing properties in the presence of anesthetics in vitro using dual somatodendritic whole cell recordings. Calcium spikes were evoked with dendritic current injection and high-frequency trains of APs at the soma. Surprisingly, we found that the direct actions of anesthetics on calcium spikes were very different. Two anesthetics (urethane and pentobarbital) suppressed dendritic calcium spikes in vitro, whereas a mixture of ketamine and xylazine enhanced them. Propagation of spikes along the dendrite was not significantly affected by any of the anesthetics but there were various changes in somatic firing properties that were highly dependent on the anesthetic. Last, we examined the effects of anesthetics on calcium spike initiation and duration in vivo using high-frequency trains of APs generated at the cell body. We found the same anesthetic-dependent direct effects in addition to an overall reduction in dendritic excitability in anesthetized rats with all three anesthetics compared with the slice preparation.


1997 ◽  
Vol 78 (3) ◽  
pp. 1735-1739 ◽  
Author(s):  
Denis Paré ◽  
Elen Lebel ◽  
Eric J. Lang

Paré, Denis, Elen LeBel, and Eric J. Lang. Differential impact of miniature synaptic potentials on the somata and dendrites of pyramidal neurons in vivo. J. Neurophysiol. 78: 1735–1739, 1997. We studied the impact of transmitter release resistant to tetrodotoxin (TTX) in morphologically identified neocortical pyramidal neurons recorded intracellularly in barbiturate-anesthetized cats. It was observed that TTX-resistant release occurs in pyramidal neurons in vivo and at much higher frequencies than was previously reported in vitro. Further, in agreement with previous findings indicating that GABAergic and glutamatergic synapses are differentially distributed in the somata and dendrites of pyramidal cells, we found that most miniature synaptic potentials were sensitive to γ-aminobutyric acid-A (GABAA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonists in presumed somatic and dendritic impalements, respectively. Pharmacological blockage of spontaneous synaptic events produced large increases in input resistance that were more important in dendritic (≈50%) than somatic (≈10%) impalements. These findings imply that in the intact brain, pyramidal neurons are submitted to an intense spike-independent synaptic bombardment that decreases the space constant of the cells. These results should be taken into account when extrapolating in vitro findings to intact brains.


2020 ◽  
Author(s):  
Ron Refaeli ◽  
Adi Doron ◽  
Aviya Benmelech-Chovav ◽  
Maya Groysman ◽  
Tirzah Kreisel ◽  
...  

SUMMARYThe mounting evidence for the involvement of astrocytes in neuronal circuits function and behavior stands in stark contrast to the lack of detailed anatomical description of these cells and the neurons in their domains. To fill this void, we imaged >30,000 astrocytes in cleared hippocampi, and employed converging genetic, histological and computational tools to determine the elaborate structure, distribution and neuronal content of astrocytic domains. First, we characterized the spatial distribution of >19,000 astrocytes across CA1 lamina, and analyzed the detailed morphology of thousands of reconstructed domains. We then determined the excitatory content of CA1 astrocytes, averaging above 13 pyramidal neurons per domain and increasing towards CA1 midline. Finally, we discovered that somatostatin neurons are found in close proximity to astrocytes, compared to parvalbumin and VIP inhibitory neurons. This resource expands our understanding of fundamental hippocampal design principles, and provides the first quantitative foundation for neuron-astrocyte interactions in this region.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Miguel Camara Pirez ◽  
Heather Steele ◽  
Sven Reese ◽  
Sabine Kölle

Abstract To date sperm-oviduct interactions have largely been investigated under in vitro conditions. Therefore we set out to characterize the behaviour of bovine spermatozoa within the sperm reservoir under near in vivo conditions and in real-time using a novel live cell imaging technology and a newly established fluorescent sperm binding assay. Sperm structure and tubal reactions after sperm binding were analysed using scanning and transmission electron microscopy and histochemistry. As a model to specify the impact of stress on sperm-oviduct interactions, frozen-thawed conventional and sex-sorted spermatozoa from the same bulls (n = 7) were co-incubated with oviducts obtained from cows immediately after slaughter. Our studies revealed that within the oviductal sperm reservoir agile (bound at a tangential angle of about 30°, actively beating undulating tail), lagging (bound at a lower angle, reduced tail movement), immotile (absence of tail movement) and hyperactivated (whip-like movement of tail) spermatozoa occur, the prevalence of which changes in a time-dependent pattern. After formation of the sperm reservoir, tubal ciliary beat frequency is significantly increased (p = 0.022) and the epithelial cells show increased activity of endoplasmic reticula. After sex sorting, spermatozoa occasionally display abnormal movement patterns characterized by a 360° rotating head and tail. Sperm binding in the oviduct is significantly reduced (p = 0.008) following sexing. Sex-sorted spermatozoa reveal deformations in the head, sharp bends in the tail and a significantly increased prevalence of damaged mitochondria (p < 0.001). Our results imply that the oviductal cells specifically react to the binding of spermatozoa, maintaining sperm survival within the tubal reservoir. The sex-sorting process, which is associated with mechanical, chemical and time stress, impacts sperm binding to the oviduct and mitochondrial integrity affecting sperm motility and function.


2020 ◽  
pp. 0271678X2091053
Author(s):  
Antoine Cherix ◽  
Guillaume Donati ◽  
Blanca Lizarbe ◽  
Bernard Lanz ◽  
Carole Poitry-Yamate ◽  
...  

Hippocampus plays a critical role in linking brain energetics and behavior typically associated to stress exposure. In this study, we aimed to simultaneously assess excitatory and inhibitory neuronal metabolism in mouse hippocampus in vivo by applying 18FDG-PET and indirect 13C magnetic resonance spectroscopy (1H-[13C]-MRS) at 14.1 T upon infusion of uniformly 13C-labeled glucose ([U-13C6]Glc). Improving the spectral fitting by taking into account variable decoupling efficiencies of [U-13C6]Glc and refining the compartmentalized model by including two γ-aminobutyric acid (GABA) pools permit us to evaluate the relative contributions of glutamatergic and GABAergic metabolism to total hippocampal neuroenergetics. We report that GABAergic activity accounts for ∼13% of total neurotransmission (VNT) and ∼27% of total neuronal TCA cycle (VTCA) in mouse hippocampus suggesting a higher VTCA/VNT ratio for inhibitory neurons compared to excitatory neurons. Finally, our results provide new strategies and tools for bringing forward the developments and applications of 13C-MRS in specific brain regions of small animals.


2019 ◽  
Vol 20 (5) ◽  
pp. 1193 ◽  
Author(s):  
Marta Sofía Valero ◽  
Mariano Ramón-Gimenez ◽  
Javier Lozano-Gerona ◽  
Pablo Delgado-Wicke ◽  
Pilar Calmarza ◽  
...  

Abstract: The epithelial intermediate-conductance calcium/calmodulin-regulated KCa3.1 channel is considered to be a regulator of intestine function by controlling chloride secretion and water/salt balance. Yet, little is known about the functional importance of KCa3.1 in the intestinal epithelium in vivo. Our objective was to determine the impact of epithelial-specific inducible overexpression of a KCa3.1 transgene (KCa3.1+) and of inducible suppression (KCa3.1−) on intestinal homeostasis and function in mice. KCa3.1 overexpression in the duodenal epithelium of doxycycline (DOX)-treated KCa3.1+ mice was 40-fold above the control levels. Overexpression caused an inflated duodenum and doubling of the chyme content. Histology showed conserved architecture of crypts, villi, and smooth muscle. Unaltered proliferating cell nuclear antigen (PCNA) immune reactivity and reduced amounts of terminal deoxynucleotide transferase mediated X-dUTP nick end labeling (TUNEL)-positive apoptotic cells in villi indicated lower epithelial turnover. Myography showed a reduction in the frequency of spontaneous propulsive muscle contractions with no change in amplitude. The amount of stool in the colon was increased and the frequency of colonic contractions was reduced in KCa3.1+ animals. Senicapoc treatment prevented the phenotype. Suppression of KCa3.1 in DOX-treated KCa3.1− mice caused no overt intestinal phenotype. In conclusion, inducible KCa3.1 overexpression alters intestinal functions by increasing the chyme content and reducing spontaneous contractions and epithelial apoptosis. Induction of epithelial KCa3.1 can play a mechanistic role in the process of adaptation of the intestine.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Janelle MP Pakan ◽  
Scott C Lowe ◽  
Evelyn Dylda ◽  
Sander W Keemink ◽  
Stephen P Currie ◽  
...  

Cortical responses to sensory stimuli are modulated by behavioral state. In the primary visual cortex (V1), visual responses of pyramidal neurons increase during locomotion. This response gain was suggested to be mediated through inhibitory neurons, resulting in the disinhibition of pyramidal neurons. Using in vivo two-photon calcium imaging in layers 2/3 and 4 in mouse V1, we reveal that locomotion increases the activity of vasoactive intestinal peptide (VIP), somatostatin (SST) and parvalbumin (PV)-positive interneurons during visual stimulation, challenging the disinhibition model. In darkness, while most VIP and PV neurons remained locomotion responsive, SST and excitatory neurons were largely non-responsive. Context-dependent locomotion responses were found in each cell type, with the highest proportion among SST neurons. These findings establish that modulation of neuronal activity by locomotion is context-dependent and contest the generality of a disinhibitory circuit for gain control of sensory responses by behavioral state.


Sign in / Sign up

Export Citation Format

Share Document