scholarly journals Epigenetic engineering of yeast reveals dynamic molecular adaptation to methylation stress and genetic modulators of specific DNMT3 family members

2020 ◽  
Author(s):  
Alex I. Finnegan ◽  
Somang Kim ◽  
Hu Jin ◽  
Michael Gapinske ◽  
Wendy S. Woods ◽  
...  

ABSTRACTCytosine methylation is a ubiquitous modification in mammalian DNA generated and maintained by several DNA methyltransferases (DNMTs) with partially overlapping functions and genomic targets. To systematically dissect the factors specifying each DNMT’s activity, we engineered combinatorial knock-in of human DNMT genes in Komagataella phaffii, a yeast species lacking endogenous DNA methylation. Time-course expression measurements captured dynamic network-level adaptation of cells to DNMT3B1-induced DNA methylation stress and showed that coordinately modulating the availability of S-adenosyl methionine (SAM), the essential metabolite for DNMT-catalyzed methylation, is an evolutionarily conserved epigenetic stress response, also implicated in several human diseases. Convolutional neural networks trained on genome-wide CpG-methylation data learned distinct sequence preferences of DNMT3 family members. A simulated annealing interpretation method resolved these preferences into individual flanking nucleotides and periodic poly(A) tracts that rotationally position highly methylated cytosines relative to phased nucleosomes. Furthermore, the nucleosome repeat length defined the spatial unit of methylation spreading. Gene methylation patterns were similar to those in mammals, and hypo- and hypermethylation were predictive of increased and decreased transcription relative to control, respectively, in the absence of mammalian readers of DNA methylation. Introducing controlled epigenetic perturbations in yeast thus enabled characterization of fundamental genomic features directing specific DNMT3 proteins.

2020 ◽  
Vol 48 (8) ◽  
pp. 4081-4099 ◽  
Author(s):  
Alex I Finnegan ◽  
Somang Kim ◽  
Hu Jin ◽  
Michael Gapinske ◽  
Wendy S Woods ◽  
...  

Abstract Cytosine methylation is a ubiquitous modification in mammalian DNA generated and maintained by several DNA methyltransferases (DNMTs) with partially overlapping functions and genomic targets. To systematically dissect the factors specifying each DNMT’s activity, we engineered combinatorial knock-in of human DNMT genes in Komagataella phaffii, a yeast species lacking endogenous DNA methylation. Time-course expression measurements captured dynamic network-level adaptation of cells to DNMT3B1-induced DNA methylation stress and showed that coordinately modulating the availability of S-adenosyl methionine (SAM), the essential metabolite for DNMT-catalyzed methylation, is an evolutionarily conserved epigenetic stress response, also implicated in several human diseases. Convolutional neural networks trained on genome-wide CpG-methylation data learned distinct sequence preferences of DNMT3 family members. A simulated annealing interpretation method resolved these preferences into individual flanking nucleotides and periodic poly(A) tracts that rotationally position highly methylated cytosines relative to phased nucleosomes. Furthermore, the nucleosome repeat length defined the spatial unit of methylation spreading. Gene methylation patterns were similar to those in mammals, and hypo- and hypermethylation were predictive of increased and decreased transcription relative to control, respectively, in the absence of mammalian readers of DNA methylation. Introducing controlled epigenetic perturbations in yeast thus enabled characterization of fundamental genomic features directing specific DNMT3 proteins.


2020 ◽  
Vol 48 (7) ◽  
pp. 3949-3961 ◽  
Author(s):  
Chien-Chu Lin ◽  
Yi-Ping Chen ◽  
Wei-Zen Yang ◽  
James C K Shen ◽  
Hanna S Yuan

Abstract DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B–3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.


2019 ◽  
Author(s):  
Luis Busto-Moner ◽  
Julien Morival ◽  
Arjang Fahim ◽  
Zachary Reitz ◽  
Timothy L. Downing ◽  
...  

AbstractDNA methylation is a heritable epigenetic modification that plays an essential role in mammalian development. Genomic methylation patterns are dynamically maintained, with DNA methyltransferases mediating inheritance of methyl marks onto nascent DNA over cycles of replication. A recently developed experimental technique employing immunoprecipitation of bromodeoxyuridine labeled nascent DNA followed by bisulfite sequencing (Repli-BS) measures post-replication temporal evolution of cytosine methylation, thus enabling genome-wide monitoring of methylation maintenance. In this work, we combine statistical analysis and stochastic mathematical modeling to analyze Repli-BS data from human embryonic stem cells. We estimate site-specific kinetic rate constants for the restoration of methyl marks on >10 million uniquely mapped cytosines within the CpG (cytosine-phosphate-guanine) dinucleotide context across the genome using Maximum Likelihood Estimation. We find that post-replication remethylation rate constants span approximately two orders of magnitude, with half-lives of per-site recovery of steady-state methylation levels ranging from shorter than ten minutes to five hours and longer. Furthermore, we find that kinetic constants of maintenance methylation are correlated among neighboring CpG sites. Stochastic mathematical modeling provides insight to the biological mechanisms underlying the inference results, suggesting that enzyme processivity and/or collaboration can produce the observed kinetic correlations. Our combined statistical/mathematical modeling approach expands the utility of genomic datasets and disentangles heterogeneity in methylation patterns arising from replication-associated temporal dynamics versus stable cell-to-cell differences.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yu-Shin Nai ◽  
Yu-Chun Huang ◽  
Ming-Ren Yen ◽  
Pao-Yang Chen

DNA methyltransferases (DNMTs) are a group of proteins that catalyze DNA methylation by transferring a methyl group to DNA. The genetic variation in DNMTs results in differential DNA methylation patterns associated with various biological processes. In fungal species, DNMTs and their DNA methylation profiles were found to be very diverse and have gained many research interests. We reviewed fungal DNMTs in terms of their biological functions, protein domain structures, and their associated epigenetic regulations compared to those known in plant and animal systems. In addition, we summarized recent reports on potential RNA-directed DNA methylation (RdDM) related to DNMT5 in fungi. We surveyed up to 40 fungal species with published genome-wide DNA methylation profiles (methylomes) and presented the associations between the specific patterns of fungal DNA methylation and their DNMTs based on a phylogenetic tree of protein domain structures. For example, the main DNMTs in Basidiomycota, DNMT1 with RFD domain + DNMT5, contributing to CG methylation preference, were distinct from RID + Dim-2 in Ascomycota, resulting in a non-CG methylation preference. Lastly, we revealed that the dynamic methylation involved in fungal life stage changes was particularly low in mycelium and DNA methylation was preferentially located in transposable elements (TEs). This review comprehensively discussed fungal DNMTs and methylomes and their connection with fungal development and taxonomy to present the diverse usages of DNA methylation in fungal genomes.


2010 ◽  
Vol 63 (3) ◽  
pp. 353-365 ◽  
Author(s):  
Huihuang Yan ◽  
Shinji Kikuchi ◽  
Pavel Neumann ◽  
Wenli Zhang ◽  
Yufeng Wu ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1336 ◽  
Author(s):  
Jaqueline Loaeza-Loaeza ◽  
Adriana S. Beltran ◽  
Daniel Hernández-Sotelo

DNA methyltransferases (DNMTs) play an essential role in DNA methylation and transcriptional regulation in the genome. DNMTs, along with other poorly studied elements, modulate the dynamic DNA methylation patterns of embryonic and adult cells. We summarize the current knowledge on the molecular mechanism of DNMTs’ functional targeting to maintain genome-wide DNA methylation patterns. We focus on DNMTs’ intrinsic characteristics, transcriptional regulation, and post-transcriptional modifications. Furthermore, we focus special attention on the DNMTs’ specificity for target sites, including key cis-regulatory factors such as CpG content, common motifs, transcription factors (TF) binding sites, lncRNAs, and histone marks to regulate DNA methylation. We also review how complexes of DNMTs/TFs or DNMTs/lncRNAs are involved in DNA methylation in specific genome regions. Understanding these processes is essential because the spatiotemporal regulation of DNA methylation modulates gene expression in health and disease.


2004 ◽  
Vol 378 (3) ◽  
pp. 763-768 ◽  
Author(s):  
Cora MUND ◽  
Tanja MUSCH ◽  
Martin STRÖDICKE ◽  
Birte ASSMANN ◽  
En LI ◽  
...  

DNA methyltransferases (Dnmts) mediate the epigenetic modification of eukaryotic genomes. Mammalian DNA methylation patterns are established and maintained by co-operative interactions among the Dnmt proteins Dnmt1, Dnmt3a and Dnmt3b. Owing to their simultaneous presence in mammalian cells, the activities of individual Dnmt have not yet been determined. This includes a fourth putative Dnmt, namely Dnmt2, which has failed to reveal any activity in previous assays. We have now established transgenic Drosophila strains that allow for individual overexpression of all known mouse Dnmts. Quantitative analysis of genomic cytosine methylation levels demonstrated a robust Dnmt activity for the de novo methyltransferases Dnmt3a and Dnmt3b. In addition, we also detected a weak but significant activity for Dnmt2. Subsequent methylation tract analysis by genomic bisulphite sequencing revealed that Dnmt3 enzymes preferentially methylated CpG dinucleotides in a processive manner, whereas Dnmt2 methylated isolated cytosine residues in a non-CpG dinucleotide context. Our results allow a direct comparison of the activities of mammalian Dnmts and suggest a significant functional specialization of these enzymes.


2020 ◽  
Author(s):  
Izaskun Mallona ◽  
Ioana Mariuca Ilie ◽  
Massimiliano Manzo ◽  
Amedeo Caflisch ◽  
Tuncay Baubec

AbstractMammalian de novo DNA methyltransferases (DNMT) are responsible for the establishment of cell-type-specific DNA methylation in healthy and diseased tissues. Through genome-wide analysis of de novo methylation activity in murine stem cells we uncover that DNMT3A prefers to methylate CpGs followed by cytosines or thymines, while DNMT3B predominantly methylates CpGs followed by guanines or adenines. These signatures are further observed at non-CpG sites, resembling methylation context observed in specialised cell types, including neurons and oocytes. We further show that these preferences are not mediated by the differential recruitment of the two de novo DNMTs to the genome but are resulting from structural differences in their catalytic domains. Molecular dynamics simulations suggest that, in case of DNMT3A, the preference is due to favourable polar interactions between the flexible Arg836 side chain and the guanine that base-pairs with the cytosine following the CpG. This context-dependent de novo DNA methylation provides additional insights into the complex regulation of methylation patterns in different cell types.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Todd R. Robeck ◽  
Zhe Fei ◽  
Ake T. Lu ◽  
Amin Haghani ◽  
Eve Jourdain ◽  
...  

AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wardah Mahmood ◽  
Lars Erichsen ◽  
Pauline Ott ◽  
Wolfgang A. Schulz ◽  
Johannes C. Fischer ◽  
...  

AbstractLINE-1 hypomethylation of cell-free DNA has been described as an epigenetic biomarker of human aging. However, in the past, insufficient differentiation between cellular and cell-free DNA may have confounded analyses of genome-wide methylation levels in aging cells. Here we present a new methodological strategy to properly and unambiguously extract DNA methylation patterns of repetitive, as well as single genetic loci from pure cell-free DNA from peripheral blood. Since this nucleic acid fraction originates mainly in apoptotic, senescent and cancerous cells, this approach allows efficient analysis of aged and cancerous cell-specific DNA methylation patterns for diagnostic and prognostic purposes. Using this methodology, we observe a significant age-associated erosion of LINE-1 methylation in cfDNA suggesting that the threshold of hypomethylation sufficient for relevant LINE-1 activation and consequential harmful retrotransposition might be reached at higher age. We speculate that this process might contribute to making aging the main risk factor for many cancers.


Sign in / Sign up

Export Citation Format

Share Document