scholarly journals Sex-specific crossover rates did not change with parental age in Arabidopsis

2020 ◽  
Author(s):  
Ramswaroop Saini ◽  
Amit Kumar Singh ◽  
Geoffrey J. Hyde ◽  
Ramamurthy Baskar

AbstractCrossing over, the exchange of DNA between the chromosomes during meiosis, contributes significantly to genetic variation. The rate of crossovers (CO) varies depending upon the taxon, population, age, external conditions, and also, sometimes, between the sexes, a phenomenon called heterochiasmy. In the model plant Arabidopsis thaliana, the male rate of crossovers (mCO) is typically nearly double the female rate (fCO). With increasing parental age, it has been reported that the disparity decreases, because fCO rises while mCO remains stable. That finding, however, is based on chromosome-based averaging, and it is unclear whether all parts of the genome respond similarly. We addressed this point by examining how the level of heterochiasmy responded to parental age in eight genomic intervals distributed across the five chromosomes of Arabidopsis. Unlike the previous work, in each of the eight intervals, the level of heterochiasmy did not change with age, that is, the ratio mCO:fCO remained stable. As expected, though, amongst the intervals, the levels of heterochiasmy at any of the four ages examined, did vary. We propose that while the levels of heterochiasmy in Arabidopis might decrease with age on a chromosomal basis, as reported earlier, this is not true for all locations within each chromosome. This has practical implications for plant breeding research, a major aim of which is identifying ways to induce local increases in CO rates.

2020 ◽  
Vol 10 (6) ◽  
pp. 2103-2110
Author(s):  
Ramswaroop Saini ◽  
Amit Kumar Singh ◽  
Geoffrey J. Hyde ◽  
Ramamurthy Baskar

Crossing over, the exchange of DNA between the chromosomes during meiosis, contributes significantly to genetic variation. The rate of crossovers (CO) varies depending upon the taxon, population, age, external conditions, and also, sometimes, between the sexes, a phenomenon called heterochiasmy. In the model plant Arabidopsis thaliana, the male rate of all crossover events (mCO) is typically nearly double the female rate (fCO). A previous, PCR-based genotyping study has reported that the disparity decreases with increasing parental age, because fCO rises while mCO remains stable. We revisited this topic using a fluorescent tagged lines approach to examine how heterochiasmy responded to parental age in eight genomic intervals distributed across the organism’s five chromosomes. We determined recombination frequency for, on average, more than 2000 seeds, for each interval, for each of four age groups, to estimate sex-specific CO rates. mCO did not change with age, as reported previously, but, here, fCO did not rise, and thus the levels of heterochiasmy were unchanged. We can see no methodological reason to doubt that our results reflect the underlying biology of the accessions we studied. The lack of response to age could perhaps be due to previously reported variation in CO rate among accessions of Arabidopsis.


Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 727-742 ◽  
Author(s):  
R Frankham ◽  
D A Briscoe ◽  
R K Nurthen

ABSTRACT Abdominal bristle selection lines (three high and three low) and controls were founded from a marked homozygous line to measure the contribution of sex-linked "mutations" to selection response. Two of the low lines exhibited a period of rapid response to selection in females, but not in males. There were corresponding changes in female variance, in heritabilities in females, in the sex ratio (a deficiency of females) and in fitness, as well as the appearance of a mutant phenotype in females of one line. All of these changes were due to bb alleles (partial deficiencies for the rRNA tandon) in the X chromosomes of these lines, while the Y chromosomes remained wild-type bb+. We argue that the bb alleles arose by unequal crossing over in the rRNA tandon.—A prediction of this hypothesis is that further changes can occur in the rRNA tandon as selection is continued. This has now been shown to occur.—Our minimum estimate of the rate of occurrence of changes at the rRNA tandon is 3 × 10-4. As this is substantially higher than conventional mutation rates, the questions of the mechanisms and rates of origin of new quantitative genetic variation require careful re-examination.


Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1573-1593
Author(s):  
Muhammad Saleem ◽  
Bernard C Lamb ◽  
Eviatar Nevo

Abstract Recombination generates new combinations of existing genetic variation and therefore may be important in adaptation and evolution. We investigated whether there was natural genetic variation for recombination frequencies and whether any such variation was environment related and possibly adaptive. Crossing over and gene conversion frequencies often differed significantly in a consistent direction between wild strains of the fungus Sordaria fimicola isolated from a harsher or a milder microscale environment in “Evolution Canyon,” Israel. First- and second-generation descendants from selfing the original strains from the harsher, more variable, south-facing slope had higher frequencies of crossing over in locus-centromere intervals and of gene conversion than those from the lusher north-facing slopes. There were some significant differences between strains within slopes, but these were less marked than between slopes. Such inherited variation could provide a basis for natural selection for optimum recombination frequencies in each environment. There were no significant differences in meiotic hybrid DNA correction frequencies between strains from the different slopes. The conversion analysis was made using only conversions to wild type, because estimations of conversion to mutant were affected by a high frequency of spontaneous mutation. There was no polarized segregation of chromosomes at meiosis I or of chromatids at meiosis II.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1631-1639 ◽  
Author(s):  
G P Copenhaver ◽  
E A Housworth ◽  
F W Stahl

AbstractThe crossover distribution in meiotic tetrads of Arabidopsis thaliana differs from those previously described for Drosophila and Neurospora. Whereas a chi-square distribution with an even number of degrees of freedom provides a good fit for the latter organisms, the fit for Arabidopsis was substantially improved by assuming an additional set of crossovers sprinkled, at random, among those distributed as per chi square. This result is compatible with the view that Arabidopsis has two pathways for meiotic crossing over, only one of which is subject to interference. The results further suggest that Arabidopsis meiosis has >10 times as many double-strand breaks as crossovers.


2013 ◽  
Vol 119 (1-2) ◽  
pp. 119-129 ◽  
Author(s):  
Hsien Ming Easlon ◽  
Krishna S. Nemali ◽  
James H. Richards ◽  
David T. Hanson ◽  
Thomas E. Juenger ◽  
...  

Genetics ◽  
2013 ◽  
Vol 196 (2) ◽  
pp. 569-577 ◽  
Author(s):  
Yan Li ◽  
Riyan Cheng ◽  
Kurt A. Spokas ◽  
Abraham A. Palmer ◽  
Justin O. Borevitz

2019 ◽  
Vol 27 (4) ◽  
pp. 34-36

Purpose This paper aims to review the latest management developments across the globe and pinpoint practical implications from cutting-edge research and case studies. Design/methodology/approach This briefing is prepared by an independent writer who adds their own impartial comments and places the articles in context. Findings A strong emphasis on continuous improvement can enable public sector firms to significantly raise performance and efficiency standards. However, both internal and external conditions need to be favorable in order to create an environment in which learning and change are supported. Originality/value The briefing saves busy executives and researchers hours of reading time by selecting only the very best, most pertinent information and presenting it in a condensed and easy-to-digest format


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Charlotte N. Miller ◽  
Jack Dumenil ◽  
Fu Hao Lu ◽  
Caroline Smith ◽  
Neil McKenzie ◽  
...  

Abstract Background The same species of plant can exhibit very diverse sizes and shapes of organs that are genetically determined. Characterising genetic variation underlying this morphological diversity is an important objective in evolutionary studies and it also helps identify the functions of genes influencing plant growth and development. Extensive screens of mutagenised Arabidopsis populations have identified multiple genes and mechanisms affecting organ size and shape, but relatively few studies have exploited the rich diversity of natural populations to identify genes involved in growth control. Results We screened a relatively well characterised collection of Arabidopsis thaliana accessions for variation in petal size. Association analyses identified sequence and gene expression variation on chromosome 4 that made a substantial contribution to differences in petal area. Variation in the expression of a previously uncharacterised gene At4g16850 (named as KSK) had a substantial role on variation in organ size by influencing cell size. Over-expression of KSK led to larger petals with larger cells and promoted the formation of stamenoid features. The expression of auxin-responsive genes known to limit cell growth was reduced in response to KSK over-expression. ANT expression was also reduced in KSK over-expression lines, consistent with altered floral identities. Auxin responses were reduced in KSK over-expressing cells, consistent with changes in auxin-responsive gene expression. KSK may therefore influence auxin responses during petal development. Conclusions Understanding how genetic variation influences plant growth is important for both evolutionary and mechanistic studies. We used natural populations of Arabidopsis thaliana to identify sequence variation in a promoter region of Arabidopsis accessions that mediated differences in the expression of a previously uncharacterised membrane protein. This variation contributed to altered auxin responses and cell size during petal growth.


Sign in / Sign up

Export Citation Format

Share Document