scholarly journals Specific Inhibition of GSK-3β by Tideglusib: Potential Therapeutic Target for Neuroblastoma Cancer Stem Cells

2020 ◽  
Author(s):  
Hisham F. Bahmad ◽  
Reda M. Chalhoub ◽  
Hayat Harati ◽  
Jolie Bou-Gharios ◽  
Farah Ballout ◽  
...  

AbstractNeuroblastoma is an embryonic tumor that represents the most common extracranial solid tumor in children. Resistance to therapy is attributed, in part, to the persistence of a subpopulation of slowly dividing cancer stem cells (CSCs) within those tumors. Glycogen synthase kinase (GSK)-3β is an active proline-directed serine/threonine kinase, well-known to be involved in different signaling pathways entangled in the pathophysiology of neuroblastoma. This study aims to assess the potency of an irreversible GSK-3β inhibitor drug, Tideglusib (TDG), in suppressing proliferation, viability, and migration of human neuroblastoma cell lines, as well as its effects on their CSCs subpopulation in vitro and in vivo. Our results showed that treatment with TDG significantly reduced cell proliferation, viability, and migration of SK-N-SH and SH-SY5Y cells. TDG also significantly inhibited neurospheres formation capability in both cell lines, eradicating the self-renewal ability of highly resistant CSCs. Importantly, TDG potently inhibited neuroblastoma tumor growth and progression in vivo. In conclusion, TDG proved to be an effective in vitro and in vivo treatment for neuroblastoma cell lines and may hence serve as a potential adjuvant therapeutic agent for this aggressive nervous system tumor.

Chemosphere ◽  
1995 ◽  
Vol 30 (9) ◽  
pp. 1709-1715 ◽  
Author(s):  
D. Cova ◽  
R. Perego ◽  
C. Nebuloni ◽  
G. Fontana ◽  
G.P. Molinari

2021 ◽  
Author(s):  
Balakrishna Koneru ◽  
Ahsan Farooqi ◽  
Thinhh H. Nguyen ◽  
Wan Hsi Chen ◽  
Ashly Hindle ◽  
...  

AbstractCancers overcome replicative immortality by activating either telomerase or an alternative lengthening of telomeres (ALT) mechanism. ALT occurs in ∼ 25% of high-risk neuroblastomas and relapse or progression in ALT neuroblastoma patients during or after front-line therapy is frequent and almost uniformly fatal. Temozolomide + irinotecan is commonly used as salvage therapy for neuroblastoma. Patient-derived cell-lines and xenografts established from relapsed ALT neuroblastoma patients demonstrated de novo resistance to temozolomide + irinotecan (as SN-38 in vitro, P<0.05) and in vivo (mouse event-free survival (EFS) P<0.0001) relative to telomerase-positive neuroblastomas. We observed that ALT neuroblastoma cells manifest constitutive ATM kinase activation due to spontaneous telomere dysfunction while telomerase- positive tumors lacked constitutive ATM activation or spontaneous telomere DNA damage. We demonstrated that induction of telomere dysfunction resulted in ATM activation that in turn conferred resistance to temozolomide + SN-38 (4.2 fold-change in IC50, P<0.001). ATM kinase shRNA knock-down or inhibition using a clinical-stage small molecule inhibitor (AZD0156) reversed resistance to temozolomide + irinotecan in ALT neuroblastoma cell-lines in vitro (P<0.001) and in 4 ALT xenografts in vivo (EFS P<0.0001). AZD0156 showed modest to no enhancement of temozolomide + irinotecan activity in telomerase-positive neuroblastoma cell lines and xenografts. ATR inhibition using AZD6738 did not enhance temozolomide + SN-38 activity in ALT neuroblastoma cell lines. Thus, resistance to chemotherapy in ALT neuroblastoma occurs via ATM kinase activation and was reversed with the ATM inhibitor AZD0156. Combining AZD0156 with temozolomide + irinotecan warrants clinical testing in neuroblastoma.One Statement SummaryATM activation at telomeres confers resistance to DNA damaging chemotherapy in ALT neuroblastoma that was reversed with ATM knockdown or inhibition.


2021 ◽  
Vol 3 (4) ◽  
pp. 12-24
Author(s):  
Mabao YUAN ◽  
Hanjiao HANG ◽  
Lubin YAN ◽  
Xuanjie HUANG ◽  
Ziyang SANG ◽  
...  

[Objective] Neuroblastoma is the most common pediatric neuroendocrine tumor. Patients with high-risk neuroblastoma have poor clinical outcomes. Understanding the mechanisms underlying neuroblastoma progression could help identify potential therapeutic targets. This study aimed to explore the roles of itchy E3 ubiquitin-protein ligase (ITCH) in neuroblastoma progression using neuroblastoma cell lines and xenograft models of neuroblastoma. [Methods] ITCH-silencing or overexpressing neuroblastoma cells were established using two different human neuroblastoma cell lines, SK-N-AS and SH-SY5Y. In vitro and in vivo experiments were carried out to determine the effects of ITCH on neuroblastoma cell behaviors. The dual-luciferase reporter assay and co-transfection experiments were applied to determine the interaction of ITCH and miR-145-5p during neuroblastoma progression. [Results] In both cell lines, ITCH overexpression significantly promotes the proliferation, migration, and invasion capacities of neuroblastoma cells, while ITCH silencing with ShITCH suppressed neuroblastoma cell proliferation and induced apoptosis. Moreover, overexpression of ITCH decreased 51% and 54% the protein expressions of large tumor suppressor kinase 1 (LATS1), and inhibited 59% and 66% the phosphorylation of Yes-associated protein (YAP), concomitant with 2.02-fold and 2.56-fold increased expressions of cell proliferation marker Ki67 and 2.51-fold and 2.26-fold elevated levels of anti-apoptosis marker Bcl2 in SK-N-AS and SH-SY5Y cells, respectively. The dual-luciferase reporter assay demonstrated that ITCH interacted with miR-145-5p. Further in vitro and xenograft experiments showed that ITCH negatively affected the tumor-suppressive effect of miR-145-5p. [Conclusion] ITCH promotes neuroblastoma cell proliferation and metastasis by inhibiting LATS1 and promoting YAP nuclear translocation.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Hui Qin Wang ◽  
Ensar Halilovic ◽  
Xiaoyan Li ◽  
Jinsheng Liang ◽  
Yichen Cao ◽  
...  

The efficacy of ALK inhibitors in patients with ALK-mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations.


2021 ◽  
Vol 13 (607) ◽  
pp. eabd5750
Author(s):  
Balakrishna Koneru ◽  
Ahsan Farooqi ◽  
Thinh H. Nguyen ◽  
Wan Hsi Chen ◽  
Ashly Hindle ◽  
...  

Cancers overcome replicative immortality by activating either telomerase or an alternative lengthening of telomeres (ALT) mechanism. ALT occurs in ~25% of high-risk neuroblastomas, and progression in patients with ALT neuroblastoma during or after front-line therapy is frequent and often fatal. Temozolomide + irinotecan is commonly used as salvage therapy for neuroblastoma. Patient-derived cell lines and xenografts established from patients with relapsed ALT neuroblastoma demonstrated de novo resistance to temozolomide + irinotecan [SN-38 in vitro, P < 0.05; in vivo mouse event-free survival (EFS), P < 0.0001] vs. telomerase-positive neuroblastomas. We observed that ALT neuroblastoma cells manifested constitutive ataxia-telangiectasia mutated (ATM) activation due to spontaneous telomere dysfunction which was not observed in telomerase-positive neuroblastoma cells. We demonstrated that induction of telomere dysfunction resulted in ATM activation that, in turn, conferred resistance to temozolomide + SN-38 (4.2-fold change in IC50, P < 0.001). ATM knockdown (shRNA) or inhibition using a clinical-stage small-molecule inhibitor (AZD0156) reversed resistance to temozolomide + irinotecan in ALT neuroblastoma cell lines in vitro (P < 0.001) and in four ALT xenografts in vivo (EFS, P < 0.0001). AZD0156 showed modest to no enhancement of temozolomide + irinotecan activity in telomerase-positive neuroblastoma cell lines and xenografts. Ataxia telangiectasia and Rad3 related (ATR) inhibition using AZD6738 did not enhance temozolomide + SN-38 activity in ALT neuroblastoma cells. Thus, ALT neuroblastoma chemotherapy resistance occurs via ATM activation and is reversible with ATM inhibitor AZD0156. Combining AZD0156 with temozolomide + irinotecan warrants clinical testing for neuroblastoma.


2018 ◽  
Vol 47 (5) ◽  
pp. 2147-2158 ◽  
Author(s):  
Feiyu Chen ◽  
Na Luo ◽  
Yu Hu ◽  
Xin Li ◽  
Kejing  Zhang

Background/Aims: Triple negative breast cancer (TNBC) is resistant to conventional chemotherapy due to high proportions of cancer stem cells (CSCs). The aim of this study is to unravel the miR-137-mediated regulatory mechanism of B-cell lymphoma/leukemia 11A (BCL11A) in TNBC. Methods: A corhort of 34 TNBC tumor tissues and paired adjacent normal tissues, as well as 25 non-TNBC tumor tissues and paired adjacent normal tissues were collected post-operatively from patients with breast cancer. Q-PCR was performed to determine the mRNA levels of miR-137 and BCL11A in breast tissues and cell lines. Bioinformatics analysis and dual luciferase reporter assay were used to verify the direct interaction between miR-137 and BCL11A. After up-/down-regulation of BCL11A, miR-137, or DNMT1 via lentiviral transduction in TNBC cell lines SUM149 and MDA-MB-231 cells, Q-PCR and Western blot assays were used to detect the expression levels of BCL11A, DNA methyltransferases 1 (DNMT1), and Islet-1 (ISL1). Mammosphere assay was conducted to assess tumorosphere formation ability of cells, coupled with flow cytometry to determine the percentage of breast cancer stem cells. Co-immunoprecipitation assay was used to determine the interaction between BCL11A and DNMT1. Xenograft tumorigenesis assay was performed to monitor tumor formation in vivo. Results: BCL11A was highly expressed in TNBC, whereas miR-137 was significantly lower in both TNBC tissues and cell lines. miR-137 suppressed BCL11A expression at both mRNA and protein levels by directly targeting its 3’UTR. In both SUM149 and MDA-MB-231 cells, overexpression of miR-137 or knockdown of BCL11A reduced the number of tumoroshperes and the percentage of cancer stem cells in vitro, and inhibited tumor development in vivo. Furthermore, BCL11A interacted with DNMT1 in TNBC cells. Silencing of either BCL11A or DNMT1 impaired cancer stemness and tumorigenesis of TNBC via suppressing ISL1 expression both in vitro, and in vivo. Conclusions: By perturbing BCL11A-DNMT1 interaction, miR-137 impairs cancer stemness and suppresses tumor development in TNBC.


2004 ◽  
Vol 15 (8) ◽  
pp. 795-802 ◽  
Author(s):  
Marta Vorotnjak ◽  
Joachim Boos ◽  
Claudia Lanvers-Kaminsky

Author(s):  
Martin Michaelis ◽  
Iduna Fichtner ◽  
Diana Behrens ◽  
Wolfram Haider ◽  
Florian Rothweiler ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246244
Author(s):  
Laura V. Bownes ◽  
Adele P. Williams ◽  
Raoud Marayati ◽  
Laura L. Stafman ◽  
Hooper Markert ◽  
...  

Investigation of the mechanisms responsible for aggressive neuroblastoma and its poor prognosis is critical to identify novel therapeutic targets and improve survival. Enhancer of Zeste Homolog 2 (EZH2) is known to play a key role in supporting the malignant phenotype in several cancer types and knockdown of EZH2 has been shown to decrease tumorigenesis in neuroblastoma cells. We hypothesized that the EZH2 inhibitor, GSK343, would affect cell proliferation and viability in human neuroblastoma. We utilized four long-term passage neuroblastoma cell lines and two patient-derived xenolines (PDX) to investigate the effects of the EZH2 inhibitor, GSK343, on viability, motility, stemness and in vivo tumor growth. Immunoblotting confirmed target knockdown. Treatment with GSK343 led to significantly decreased neuroblastoma cell viability, migration and invasion, and stemness. GSK343 treatment of mice bearing SK-N-BE(2) neuroblastoma tumors resulted in a significant decrease in tumor growth compared to vehicle-treated animals. GSK343 decreased viability, and motility in long-term passage neuroblastoma cell lines and decreased stemness in neuroblastoma PDX cells. These data demonstrate that further investigation into the mechanisms responsible for the anti-tumor effects seen with EZH2 inhibitors in neuroblastoma cells is warranted.


Sign in / Sign up

Export Citation Format

Share Document