scholarly journals Association between proteomic blood biomarkers and DTI/NODDI metrics in adolescent football players

Author(s):  
Keisuke Kawata ◽  
Jesse A. Steinfeldt ◽  
Megan E. Huibregtse ◽  
Madeleine K. Nowak ◽  
Jonathan T. Macy ◽  
...  

ABSTRACTThe objective of the study was to examine the association between diffusion MRI techniques [diffusion tensor imaging (DTI) and neurite orientation/dispersion density imaging (NODDI)] and brain-injury blood biomarker levels [Tau, neurofilament-light (NfL), glial-fibrillary-acidic-protein (GFAP)] in high-school football and cross-country runners at their baseline, aiming to detect cumulative neuronal damage from prior seasons. Twenty-five football players and 8 cross-country runners underwent MRI and blood biomarker measures during preseason data collection. The whole-brain, tract-based spatial statistics was conducted for six diffusion metrics: fractional anisotropy (FA), mean diffusivity (MD), axial/radial diffusivity (AD, RD), neurite density index (NDI), and orientation dispersion index (ODI). Diffusion metrics and blood biomarker levels were compared between groups and associated within each group. The football group showed lower AD and MD than the cross-country group in various axonal tracts of the right hemisphere. Elevated ODI was observed in the football group in the right hemisphere of the corticospinal tract. Blood biomarker levels were consistent between groups except for elevated Tau levels in the cross-country group. Tau level was positively associated with MD and negatively associated with NDI in the corpus callosum of football players, but not in cross-country runners. Our data suggest that football players may develop axonal microstructural abnormality. Levels of MD and NDI in the corpus callosum were associated with serum Tau levels, highlighting the vulnerability of the corpus callosum against cumulative head impacts. Despite observing multimodal associations in some brain areas, neuroimaging and blood biomarkers may not strongly correlate to reflect the severity of brain damage.

1992 ◽  
Vol 50 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Susana Camposano ◽  
Fernando Lolas

Left handers and women show less anatomical brain asymmetry, larger corpus callosum and more bilateral representation of specific functions. Sensory and cognitive components of cortical auditory evoked potentials (AEF) have been shown to be asymmetric in right handed males and to be influenced by stimulus intensity. In this study the influence of sex, handedness and stimulus intensity upon AEP components is investigated under basal conditions of passive attention. 14 right handed males, 14 right handed females, 14 left handed males, and 14 left handed females were studied while lying awake and paying passive attention to auditory stimulation (series of 100 binaural clicks, duration 1 msec, rate 1/sec, at four intensities). Cz, C3 and C4 referenced to linked mastoids and right EOG were recorded. Analysis time was 400 msec, average evoked potentials were based on 100 clicks. Stimulus intensity and gender affect early sensory components (P1N1 and N1P2) at central leads, asymmetry is influenced only by handedness, right handers showing larger P1N1 amplitudes over the right hemisphere.


1995 ◽  
Vol 6 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Janet Metcalfe ◽  
Margaret Funnell ◽  
Michael S. Gazzaniga

Six experiments explored hemispheric memory differences in a patient who had undergone complete corpus callosum resection The right hemisphere was better able than the left to reject new events similar to originally presented materials of several types, including abstract visual forms, faces, and categorized lists of words Although the left hemisphere is capable of mental manipulation, imagination, semantic priming, and complex language production, these functions are apparently linked to memory confusions—confusions less apparent in the more literal right hemisphere Differences between the left and right hemispheres in memory for new schematically consistent or categorically related events may provide a source of information allowing people to distinguish between what they actually witnessed and what they only inferred


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2106
Author(s):  
Yair Pinto ◽  
Edward H.F. de Haan ◽  
Maria-Chiara Villa ◽  
Sabrina Siliquini ◽  
Gabriele Polonara ◽  
...  

One of the most fundamental, and most studied, human cognitive functions is working memory. Yet, it is currently unknown how working memory is unified. In other words, why does a healthy human brain have one integrated capacity of working memory, rather than one capacity per visual hemifield, for instance. Thus, healthy subjects can memorize roughly as many items, regardless of whether all items are presented in one hemifield, rather than throughout two visual hemifields. In this current research, we investigated two patients in whom either most, or the entire, corpus callosum has been cut to alleviate otherwise untreatable epilepsy. Crucially, in both patients the anterior parts connecting the frontal and most of the parietal cortices, are entirely removed. This is essential, since it is often posited that working memory resides in these areas of the cortex. We found that despite the lack of direct connections between the frontal cortices in these patients, working memory capacity is similar regardless of whether stimuli are all presented in one visual hemifield or across two visual hemifields. This indicates that in the absence of the anterior parts of the corpus callosum working memory remains unified. Moreover, it is important to note that memory performance was not similar across visual fields. In fact, capacity was higher when items appeared in the left visual hemifield than when they appeared in the right visual hemifield. Visual information in the left hemifield is processed by the right hemisphere and vice versa. Therefore, this indicates that visual working memory is not symmetric, with the right hemisphere having a superior visual working memory. Nonetheless, a (subcortical) bottleneck apparently causes visual working memory to be integrated, such that capacity does not increase when items are presented in two, rather than one, visual hemifield.


2021 ◽  
Vol 21 (2) ◽  
pp. 99-105
Author(s):  
Inessa V. Karpova ◽  
Nikita A. Popkovsky ◽  
Sergey N. Proshin ◽  
Evgeny R. Bychkov ◽  
Ilia Y. Tissen ◽  
...  

BACKGROUND: The study of the mechanisms of interaction of paired structures of the mammalian brain is a fundamental problem of modern neuroscience, which is of great applied importance. Even mild underdevelopment of the corpus callosum in humans can lead to autism. It is known that the intensity of intraspecific interactions in BALB/c mice is lower than in white outbred ones, while some BALB/c substrains are characterized by underdevelopment of the corpus callosum. AIM: To compare the morphological parameters of the large brain commissures in white outbred mice and BALB/c mice grown in the Rappolovo nursery (Leningrad region). MATERIALS AND METHODS: The morphology of the corpus callosum was studied in 13 male white outbred mice and 7 male BALB/c mice at the age of 8 months. RESULTS: In mice of both subpopulations, the area of the anterior commissure of the left hemisphere was smaller than that of the right hemisphere (p 0.05). There were no differences between subpopulations in this parameter. The area of the left section of the corpus callosum trunkus in outbred mice was larger than the right one (p 0.001), while in BALB/c mice the areas of the left and right slices did not differ. Despite the absence of significant differences in the area of the anterior part (rostrum et genu) of the corpus callosum the density of the location of oligodendrocytes in this brain structure in the mice of the two subpopulations was different. The number of oligodendrocytes in 0.01 mm2 on the left section of the anterior part of the corpus callosum in BALB/c mice was greater than in white outbred mice (p 0.05). A similar trend was revealed when comparing slices of the right hemisphere (p = 0.065). CONCLUSIONS: The large area of the right parasagittal slice of the anterior commissure suggests that some of its constituent fibers do not cross the midline, but end within the same hemisphere, which may be the morphological basis for the functional dominance of the temporal cortex of the left hemisphere in mice of both subpopulations. The corpus callosum in BALB/c mice is developed symmetrically, and in white outbred ones asymmetrically. This feature may be the morphological basis for the functional dominance of the parietal cortex of the right hemisphere in outbred animals.


2008 ◽  
Vol 14 (5) ◽  
pp. 771-781 ◽  
Author(s):  
H. JULIA HANNAY ◽  
AMY WALKER ◽  
MAUREEN DENNIS ◽  
LARRY KRAMER ◽  
SUSAN BLASER ◽  
...  

Spina bifida meningomyelocele with hydrocephalus (SBM) is commonly associated with anomalies of the corpus callosum (CC). We describe MRI patterns of regional CC agenesis and relate CC anomalies to functional laterality based on a dichotic listening test in 90 children with SBM and 27 typically developing controls. Many children with SBM (n = 40) showed regional CC anomalies in the form of agenesis of the rostrum and/or splenium, and a smaller number (n = 20) showed hypoplasia (thinning) of all CC regions (rostrum, genu, body, and splenium). The expected right ear advantage (REA) was exhibited by normal controls and children with SBM having a normal or hypoplastic splenium. It was not shown by children with SBM who were left handed, missing a splenium, or had a higher level spinal cord lesion. Perhaps the right hemisphere of these children is more involved in processing some aspects of linguistic stimuli. (JINS, 2008, 14, 771–781.)


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Chiara Pierpaoli ◽  
Mojgan Ghoushi ◽  
Nicoletta Foschi ◽  
Simona Lattanzi ◽  
Mara Fabri ◽  
...  

The mental rotation (MR) is an abstract mental operation thanks to which a person imagines rotating an object or a body part to place it in an other position. The ability to perform MR was belived to belong to the right hemisphere for objects, and to the left for one’s ownbody images. Mental rotation is considered to be basic for imitation with the anatomical perspective, which in turn is needed for social interactions and learning. Altered imitative performances have been reported in patients with resections or microstructure alterations of the corpus callosum (CC). These patients also display a reduced MR ability compared to control subjects, as shown in a recent behavioral study. The difference was statistically significant, leading us to hypothesize a role of the CC to integrate the two hemispheres’ asymmetric functions. The present study was designed to detect, by means of a functional MRI, the cortical activation evoked during an MR task in healthy control subjects and callosotomized patients. The results suggest that performing MR requires activation of opercular cortex and inferior parietal lobule in either hemispheres, and likely the integrity of the CC, thus confirming that the main brain commissure is involved in cognitive functions.


2008 ◽  
Vol 20 (1-2) ◽  
pp. 55-60 ◽  
Author(s):  
Jonathan T. Kleinman ◽  
Amitabh Gupta

Spatial processing is lateralized: the right hemisphere is optimized for perceiving global aspects of space (“seeing the forest”), while the left hemisphere specializes in perceiving local aspects of space (“seeing the trees”). However, less is known about how the information is shared across the hemispheres and which areas within the corpus callosum are required for transferring and integrating visuospatial information. Here, we report a 60 year old woman with a mass lesion in the splenium of the corpus callosum who demonstrated visuospatial processing deficits that were out-of-proportion to the rest of her neurological examination. Remarkably, in the Rey-Osterrieth Complex figure task, she copied with her left hand the outlines of the figure (global aspects), whereas with her right hand she drew the details of that figure (local aspects). While hemispheric lesions have demonstrated single dissociations of spatial processing, these results indicate that a lesion in the corpus callosum can produce a double dissociation for high-level spatial tasks, as local and global spatial perception are further dissociated with handedness. Interestingly, as little as the posterior third of the corpus callosum is required for proper visuospatial information transfer and integration, which provides important insight into the interhemispheric functional anatomy that underlies visuospatial perception.


Sign in / Sign up

Export Citation Format

Share Document