scholarly journals Auditory interhemispheric transfer in relation to patterns of partial agenesis and hypoplasia of the corpus callosum in spina bifida meningomyelocele

2008 ◽  
Vol 14 (5) ◽  
pp. 771-781 ◽  
Author(s):  
H. JULIA HANNAY ◽  
AMY WALKER ◽  
MAUREEN DENNIS ◽  
LARRY KRAMER ◽  
SUSAN BLASER ◽  
...  

Spina bifida meningomyelocele with hydrocephalus (SBM) is commonly associated with anomalies of the corpus callosum (CC). We describe MRI patterns of regional CC agenesis and relate CC anomalies to functional laterality based on a dichotic listening test in 90 children with SBM and 27 typically developing controls. Many children with SBM (n = 40) showed regional CC anomalies in the form of agenesis of the rostrum and/or splenium, and a smaller number (n = 20) showed hypoplasia (thinning) of all CC regions (rostrum, genu, body, and splenium). The expected right ear advantage (REA) was exhibited by normal controls and children with SBM having a normal or hypoplastic splenium. It was not shown by children with SBM who were left handed, missing a splenium, or had a higher level spinal cord lesion. Perhaps the right hemisphere of these children is more involved in processing some aspects of linguistic stimuli. (JINS, 2008, 14, 771–781.)

1992 ◽  
Vol 50 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Susana Camposano ◽  
Fernando Lolas

Left handers and women show less anatomical brain asymmetry, larger corpus callosum and more bilateral representation of specific functions. Sensory and cognitive components of cortical auditory evoked potentials (AEF) have been shown to be asymmetric in right handed males and to be influenced by stimulus intensity. In this study the influence of sex, handedness and stimulus intensity upon AEP components is investigated under basal conditions of passive attention. 14 right handed males, 14 right handed females, 14 left handed males, and 14 left handed females were studied while lying awake and paying passive attention to auditory stimulation (series of 100 binaural clicks, duration 1 msec, rate 1/sec, at four intensities). Cz, C3 and C4 referenced to linked mastoids and right EOG were recorded. Analysis time was 400 msec, average evoked potentials were based on 100 clicks. Stimulus intensity and gender affect early sensory components (P1N1 and N1P2) at central leads, asymmetry is influenced only by handedness, right handers showing larger P1N1 amplitudes over the right hemisphere.


1994 ◽  
Vol 52 (2) ◽  
pp. 204-209 ◽  
Author(s):  
Ana Regina Caner-Cukiert ◽  
Arthur Cukiert

Dichotic listening tests have been being used in an increasing frequency to determine in a non-invasive way the cerebral dominance in right- and left-handed patients. This is especially relevant when surgery in eloquent brain areas is being contemplated. A Portuguese version of the dichotic words listening test was developed based mainly on Wexler's protocol. It consisted of 15 pairs of words with a stimulus dominance lower than 50%. They were recorded using natural voice and time and intensity synchronization by means of a specialized software. Each pair of words was presented twice in different channels within each block. The items were randomized and presented with a 300 msec interval between each trial. Four blocks of 30 pairs of words each were created, totalizing 120 trials. In the scoring process, the words heard over the right and left ears were wrote down. The number of times each word was heard over each ear was computed and their values subtracted yielding a partial score for each specific word pair. This process was repeated for all stimuli pair and a final score for right and left predominance was then reached. Thirty-two right handed normal individuals underwent the test 93.8% showed a right ear advantage. These results are very similar to the actual left hemisphere dominance rate in a right-handed population.


2015 ◽  
Vol 73 (10) ◽  
pp. 834-839 ◽  
Author(s):  
Núbia Maria Freire Vieira Lima ◽  
Karina Cândido Menegatti ◽  
Érica Yu ◽  
Natália Yumi Sacomoto ◽  
Thais Botossi Scalha ◽  
...  

Objective To investigate somatosensory deficits in the ipsilesional wrist and hand in chronic stroke patients and correlate these deficits with contralesional sensorimotor dysfunctions, functional testing, laterality and handedness.Methods Fifty subjects (twenty-two healthy volunteers and twenty-eight stroke patients) underwent evaluation with Semmes-Weinstein monofilaments, the sensory and motor Fugl-Meyer Assessment, the Nottingham Sensory Assessment in both wrists and hands and functional tests.Results Twenty-five patients had sensory changes in the wrist and hand contralateral to the stroke, and eighteen patients (64%) had sensory deficits in the ipsilesional wrist and hand. The most significant ipsilesional sensory loss was observed in the left-handed patients. We found that the patients with brain damage in the right hemisphere had better scores for ipsilesional tactile sensation.Conclusions A reduction in ipsilesional conscious proprioception, tactile or thermal sensation was found in stroke subjects. Right hemisphere damage and right-handed subjects had better scores in ipsilesional tactile sensation.


1988 ◽  
Vol 67 (2) ◽  
pp. 555-561 ◽  
Author(s):  
Mary Ann Valentino ◽  
James W. Brown ◽  
W. A. Cronan-Hillix

Aesthetic preferences for photographs with the main focal content either to the left or right of the photograph's center were examined in right- and left-handed subjects. Verbal responses or manual responses were required. In one experiment with 261 introductory psychology student-subjects, left-handers more often preferred photographs with the more important part on the left (“left-geared”) than did right-handers. Exp. 2, involving 84 right-handed student subjects, showed that left-geared photographs presented on the left side were preferred more often than left-geared photographs presented on the right side, and left-geared photographs presented on the left side were more often chosen when a left-handed manual response was required. Interactions between handedness, position of the stimulus, language hemisphere, and response mode make it extremely difficult to ascertain whether the right hemisphere is really more involved in aesthetic decisions.


1992 ◽  
Vol 12 (4) ◽  
pp. 546-553 ◽  
Author(s):  
Steven Warach ◽  
Ruben C. Gur ◽  
Raquel E. Gur ◽  
Brett E. Skolnick ◽  
Walter D. Obrist ◽  
...  

We previously reported decreased mean CBF between consecutive resting conditions, ascribed to habituation. Here we address the regional specificity of habituation over three consecutive flow studies. Regional CBF (rCBF) was measured in 55 adults (12 right-handed men, 12 right-handed women, 14 left-handed men, 17 left-handed women), with the 133Xe inhalation technique, during three conditions: Resting, verbal tasks (analogies), and spatial tasks (line orientation). Changes in rCBF attributable to the cognitive tasks were eliminated by correcting these values to a resting equivalent. There was a progressive decrease in mean rCBF over time, reflecting habituation. This effect differed by region, with specificity at frontal (prefrontal, inferior frontal, midfrontal, superior frontal) and inferior parietal regions. In the inferior parietal region, habituation was more marked in the left than the right hemisphere. Right-handers showed greater habituation than did left-handers. There was no sex difference in global habituation, but males showed greater left whereas females showed greater right hemispheric habituation. The results suggest that habituation to the experimental setting has measurable effects on rCBF, which are differently lateralized for men and women. These effects are superimposed on task activation and are most pronounced in regions that have been implicated in attentional processes. Thus, regional decrement in brain activity related to habituation seems to complement attentional effects, suggesting a neural network for habituation reciprocating that for attention.


1995 ◽  
Vol 6 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Janet Metcalfe ◽  
Margaret Funnell ◽  
Michael S. Gazzaniga

Six experiments explored hemispheric memory differences in a patient who had undergone complete corpus callosum resection The right hemisphere was better able than the left to reject new events similar to originally presented materials of several types, including abstract visual forms, faces, and categorized lists of words Although the left hemisphere is capable of mental manipulation, imagination, semantic priming, and complex language production, these functions are apparently linked to memory confusions—confusions less apparent in the more literal right hemisphere Differences between the left and right hemispheres in memory for new schematically consistent or categorically related events may provide a source of information allowing people to distinguish between what they actually witnessed and what they only inferred


2021 ◽  
Vol 2 (2) ◽  
pp. 1-8
Author(s):  
Agniva Pal ◽  

This is a neuro-linguistic research which compares Bangla speaking right hemisphere damaged (furthermore to be called RHD) male participants to age and gender matched normal males who have been selected from the same family as the right hemisphere damaged participants. RHD or right hemisphere damaged participants are those who have lesions or damages in the right hemisphere of the brain or both. This paper pertains to the understanding how a lesion or a damage in the right hemisphere can cause changes in the pattern of communication of adult males in the age group of 45 to 70. This paper discerns the difference in durations of controlled speech in RHD males compared to age and gender matched normal controls. It will be measured with the help a predetermined passage. A passage will be played to them, using a media player (to make sure everyone listens to the same recording, ruling out chances of error there) and then they will be asked to repeat the same passage, as much as they can remember. In this research, we will be looking at the time they would take to narrate the whole passage without missing out on anything.


2019 ◽  
Vol 31 (11) ◽  
pp. 1674-1688
Author(s):  
Vinod Goel ◽  
Miriam Marling ◽  
Vanessa Raymont ◽  
Frank Krueger ◽  
Jordan Grafman

The effect of prior beliefs on reasoning and decision-making is a robust, poorly understood phenomenon, exhibiting considerable individual variation. Neuroimaging studies widely show the involvement of the left pFC in reasoning involving beliefs. However, little patient data exist to speak to the necessity and role of the left pFC in belief-based inference. To address this shortcoming, we tested 102 patients with unilateral focal penetrating traumatic brain injuries and 49 matched controls. Participants provided plausibility ratings (plausible/implausible) to simple inductive arguments and (separately) strength of believability ratings of the conclusion to those same arguments. A voxel-based lesion symptom mapping analysis identified 10 patients, all with lesions to the left pFC (BA 9 and BA 10) as rating significantly fewer arguments with highly believable conclusions as “plausible,” compared with all other patients. Subsequent analyses, incorporating the right hemisphere homologue of these patients ( n = 12) and normal controls ( n = 24), revealed patients with lesions to left pFC found fewer arguments plausible in the high believable than either of these groups, and there was no difference in the behavioral scores of the right pFC patients and normal controls. Further analysis, utilizing the belief ratings as the dependent measure, revealed a Group × Belief Rating interaction, with left pFC patients having less intense beliefs about the conclusions of moderately believable and highly believable arguments. We interpreted these results to indicate that lesions to left pFC (BA 9, BA 10) increase incredulity and make these patients more skeptical reasoners. The former can partially, but not fully, explain the latter. The other relevant factor may be that unilateral left pFC lesions disrupt hemispheric equilibrium and allow for an increased inhibitory role of the right pFC. We speculate that individual differences in belief bias in reasoning in the normal population may be a function of individual differences in the left and right pFC interactional dynamics.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2106
Author(s):  
Yair Pinto ◽  
Edward H.F. de Haan ◽  
Maria-Chiara Villa ◽  
Sabrina Siliquini ◽  
Gabriele Polonara ◽  
...  

One of the most fundamental, and most studied, human cognitive functions is working memory. Yet, it is currently unknown how working memory is unified. In other words, why does a healthy human brain have one integrated capacity of working memory, rather than one capacity per visual hemifield, for instance. Thus, healthy subjects can memorize roughly as many items, regardless of whether all items are presented in one hemifield, rather than throughout two visual hemifields. In this current research, we investigated two patients in whom either most, or the entire, corpus callosum has been cut to alleviate otherwise untreatable epilepsy. Crucially, in both patients the anterior parts connecting the frontal and most of the parietal cortices, are entirely removed. This is essential, since it is often posited that working memory resides in these areas of the cortex. We found that despite the lack of direct connections between the frontal cortices in these patients, working memory capacity is similar regardless of whether stimuli are all presented in one visual hemifield or across two visual hemifields. This indicates that in the absence of the anterior parts of the corpus callosum working memory remains unified. Moreover, it is important to note that memory performance was not similar across visual fields. In fact, capacity was higher when items appeared in the left visual hemifield than when they appeared in the right visual hemifield. Visual information in the left hemifield is processed by the right hemisphere and vice versa. Therefore, this indicates that visual working memory is not symmetric, with the right hemisphere having a superior visual working memory. Nonetheless, a (subcortical) bottleneck apparently causes visual working memory to be integrated, such that capacity does not increase when items are presented in two, rather than one, visual hemifield.


Sign in / Sign up

Export Citation Format

Share Document