scholarly journals Peripheral tolerance checkpoints imposed by ubiquitous antigen expression limit antigen-specific B-cell responses under strongly immunogenic conditions

2020 ◽  
Author(s):  
Jeremy F. Brooks ◽  
Peter R. Murphy ◽  
James E.M. Barber ◽  
James W. Wells ◽  
Raymond J. Steptoe

AbstractA series of layered peripheral checkpoints maintain self-reactive B cells in an unresponsive state. Autoantibody production occurs when these checkpoints are breached, however, when and how this occurs is largely unknown. In particular, how self-reactive B cells are restrained during bystander inflammation in otherwise healthy individuals is poorly understood. A weakness has been the unavailability of methods capable of dissecting physiologically-relevant B-cell responses, without the use of an engineered B-cell receptor. Resolving this will provide insights that decipher how this process goes awry during autoimmunity or could be exploited for therapy. Here we use a strong adjuvant to provide bystander innate and adaptive signals that promote B-cell responsiveness, in conjunction with newly developed B cell detection tools to study in detail the ways that peripheral tolerance mechanisms limit the expansion and function of self-reactive B cells activated under these conditions. We show that although autoreactive B cells are recruited into the germinal centre, their development does not proceed, possibly through rapid counter-selection. Consequently, differentiation of plasma cells is blunted, and autoantibody responses are transient and devoid of affinity maturation. We propose this approach and these tools can be more widely applied to track antigen-specific B cell responses to more disease relevant antigens, without the need for BCR transgenic mice, in settings where tolerance pathways are compromised or have been genetically manipulated to drive stronger insights into the biology underlying B cell-mediated autoimmunity.

2021 ◽  
Vol 12 ◽  
Author(s):  
Kenneth Green ◽  
Thomas R. Wittenborn ◽  
Cecilia Fahlquist-Hagert ◽  
Ewa Terczynska-Dyla ◽  
Nina van Campen ◽  
...  

Germinal centers (GCs) are induced microanatomical structures wherein B cells undergo affinity maturation to improve the quality of the antibody response. Although GCs are crucial to appropriate humoral responses to infectious challenges and vaccines, many questions remain about the molecular signals driving B cell participation in GC responses. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is an important mediator of type I interferon and proinflammatory cytokine responses during infection and cellular stress. Recent studies have reported important roles for STING in B cell responses, including an impact on GC B cells and downstream antibody responses, which could have great consequences for vaccine design and understanding STING-associated interferonopathies. GCs are also involved in untoward reactions to autoantigens in a plethora of autoimmune disorders, and it is generally thought that these responses coopt the mechanisms used in foreign antigen-directed GCs. Here, we set out to investigate the importance of the cGAS-STING pathway in autoreactive B cell responses. In a direct competition scenario in a murine mixed bone marrow chimera model of autoreactive GCs, we find that B cell intrinsic deficiency of cGAS, STING, or the type I interferon receptor IFNAR, does not impair GC participation, whereas Toll-like receptor (TLR)-7 deficiency mediates a near-complete block. Our findings suggest that physiological B cell responses are strictly sustained by signals linked to BCR-mediated endocytosis. This wiring of B cell signals may enable appropriate antibody responses, while at the same time restricting aberrant antibody responses during infections and in autoimmune or autoinflammatory settings.


2019 ◽  
Vol 116 (37) ◽  
pp. 18550-18560 ◽  
Author(s):  
Wenqian Zhang ◽  
Huihui Zhang ◽  
Shujun Liu ◽  
Fucan Xia ◽  
Zijian Kang ◽  
...  

Excessive self-reactive and inadequate affinity-matured antigen-specific antibody responses have been reported to coexist in lupus, with elusive cellular and molecular mechanisms. Here, we report that the antigen-specific germinal center (GC) response―a process critical for antibody affinity maturation―is compromised in murine lupus models. Importantly, this defect can be triggered by excessive autoimmunity-relevant CD11c+Tbet+age-associated B cells (ABCs). In B cell-intrinsic Ship-deficient (ShipΔB) lupus mice, excessive CD11c+Tbet+ABCs induce deregulated follicular T-helper (TFH) cell differentiation through their potent antigen-presenting function and consequently compromise affinity-based GC selection. Excessive CD11c+Tbet+ABCs and deregulated TFHcell are also present in other lupus models and patients. Further, over-activated Toll-like receptor signaling in Ship-deficient B cells is critical for CD11c+Tbet+ABC differentiation, and blocking CD11c+Tbet+ABC differentiation in ShipΔB mice by ablating MyD88 normalizes TFHcell differentiation and rescues antigen-specific GC responses, as well as prevents autoantibody production. Our study suggests that excessive CD11c+Tbet+ABCs not only contribute significantly to autoantibody production but also compromise antigen-specific GC B-cell responses and antibody-affinity maturation, providing a cellular link between the coexisting autoantibodies and inadequate affinity-matured antigen-specific antibodies in lupus models and a potential target for treating lupus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunhong Huang ◽  
Junwei Shao ◽  
Congcong Lou ◽  
Fengtian Wu ◽  
Tiantian Ge ◽  
...  

Background and AimsPatients with decompensated HBV-related liver cirrhosis (HBV D-LC) showed compromised immune responses, which manifested as a proneness to develop infections and hyporesponsiveness to vaccines, resulting in accelerated disease progression. The alterations in T cell-dependent B cell responses in this pathophysiological process were not well understood. This study aimed to investigate T cell-dependent B cell responses in this process and discuss the mechanism from the perspective of metabolism.MethodsChanges in phenotypes and subsets of peripheral B cells between HBV D-LC patients and healthy controls (HCs) were compared by flow cytometry. Isolated B cells were activated by coculture with circulating T follicular (cTfh) cells. After coculture, the frequencies of plasmablasts and plasma cells and immunoglobin levels were analyzed. Oxidative phosphorylation (OXPHOS) and glycolysis were analyzed by a Seahorse analyzer. Mitochondrial function and the AKT/mTOR pathway were analyzed by flow cytometry.ResultsThe proliferation and differentiation capacities of B cells after T cell stimulation were impaired in D-LC. Furthermore, we found that B cells from D-LC patients showed reductions in OXPHOS and glycolysis after activation, which may result from reduced glucose uptake, mitochondrial dysfunction and attenuated activation of the AKT/mTOR pathway.ConclusionsB cells from HBV D-LC patients showed dysfunctional energy metabolism after T cell-dependent activation. Understanding the regulations of B cell metabolic pathway and their changes may provide a new direction to rescue B cell hyporesponsiveness in patients with HBV D-LC, preventing these patients be infected and improving sensitivity to vaccines.


2021 ◽  
Vol 147 (2) ◽  
pp. AB3
Author(s):  
Adora Lin ◽  
Hemant Sharma ◽  
Pamela Guerrerio ◽  
Catherine Bollard

2010 ◽  
Vol 207 (2) ◽  
pp. 353-363 ◽  
Author(s):  
Michelle A. Linterman ◽  
Laura Beaton ◽  
Di Yu ◽  
Roybel R. Ramiscal ◽  
Monika Srivastava ◽  
...  

During T cell–dependent responses, B cells can either differentiate extrafollicularly into short-lived plasma cells or enter follicles to form germinal centers (GCs). Interactions with T follicular helper (Tfh) cells are required for GC formation and for selection of somatically mutated GC B cells. Interleukin (IL)-21 has been reported to play a role in Tfh cell formation and in B cell growth, survival, and isotype switching. To date, it is unclear whether the effect of IL-21 on GC formation is predominantly a consequence of this cytokine acting directly on the Tfh cells or if IL-21 directly influences GC B cells. We show that IL-21 acts in a B cell–intrinsic fashion to control GC B cell formation. Mixed bone marrow chimeras identified a significant B cell–autonomous effect of IL-21 receptor (R) signaling throughout all stages of the GC response. IL-21 deficiency profoundly impaired affinity maturation and reduced the proportion of IgG1+ GC B cells but did not affect formation of early memory B cells. IL-21R was required on GC B cells for maximal expression of Bcl-6. In contrast to the requirement for IL-21 in the follicular response to sheep red blood cells, a purely extrafollicular antibody response to Salmonella dominated by IgG2a was intact in the absence of IL-21.


2020 ◽  
Vol 11 ◽  
Author(s):  
Austin Negron ◽  
Olaf Stüve ◽  
Thomas G. Forsthuber

While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.


1975 ◽  
Vol 142 (5) ◽  
pp. 1165-1179 ◽  
Author(s):  
S K Pierce ◽  
N R Klinman

The ability of T cells to enhance the response of syngeneic and allogeneic B cells to thymus-dependent hapten-carrier conjugates was analyzed. This analysis was carried out on individual primary B cells in splenic fragment cultures derived from irradiated reconstituted mice. This system has several advantages: (a) the response of the B cells is entirely dependent on carrier priming of the irradiated recipient; (b) this B-cell response can be quantitated in terms of the number of responding cells; and (c) very small B-cell responses can be readily detected and analyzed. The results indicate that the majority of hapten-specific B cells were stimulated in allogeneic and syngeneic recipients only if these recipients were previously carrier primed. The number of B cells responding in carrier-primed allogeneic recipients was 60-70% of that in syngeneic carrier-primed recipients. The antibody-forming cell clones resulting from B cells stimulated in the allogeneic environment produced small amounts of antibody and antibody solely of the IgM immunoglobulin class, while the larger responses in syngeneic recipients were predominantly IgG1 or IgM plus IgG1. The capacity of collaborative interactions between carrier-primed T cells and primary B cells to yield IgG1 antibody-producing clones was shown to be dependent on syngeny between these cells in the H-2 gene complex. It is concluded that: (a) B cells can be triggered by T-dependent antigens to clone formation through collaboration with T cells which differ at the H-2 complex as long as these T cells recognize the antigen; (b) the immunoglobulin class produced by the progeny of stimulated B cells generally depends on the nature of the stimulatory event rather than the nature of the B cell itself; and (c) stimulation to IgG1 production is dependent on syngeny between the collaborating T and B cells probably within the Ir-1A region. The role of the Ia antigens in the formation of IgG1-producing clones is not yet clear; Ia identity could permit IgG1 production or, conversely, nonidentity of Ia could induce all allogeneic interactions which prohibit IgG1 production.


Sign in / Sign up

Export Citation Format

Share Document