scholarly journals Differential and spatial expression meta-analysis of genes identified in genome-wide association studies of depression

2020 ◽  
Author(s):  
Wennie Wu ◽  
Derek Howard ◽  
Etienne Sibille ◽  
Leon French

AbstractMajor depressive disorder (MDD) is the most prevalent psychiatric disorder worldwide and affects individuals of all ages. It causes significant psychosocial impairments and is a major cause of disability. A recent consortium study identified 102 genetic variants and 269 genes associated with depression. To provide targets for future depression research, we prioritized these recently identified genes using expression data. We examined differential expression of these genes in three studies that profiled gene expression of MDD cases and controls across multiple brain regions. In addition, we integrated anatomical expression information to determine which brain regions and transcriptomic cell-types highly express the candidate genes. We highlight 11 of the 269 genes with the most consistent differential expression: MANEA, UBE2M, CKB, ITPR3, SPRY2, SAMD5, TMEM106B, ZC3H7B, LST1, ASXL3 and HSPA1A. The majority of these top genes were found to have sex-specific differential expression. We place greater emphasis on MANEA as it is the top gene in a more conservative analysis of the 269. Specifically, differential expression of MANEA was strongest in cerebral cortex regions and had opposing sex-specific effects. Anatomically, our results suggest the importance of the dorsal lateral geniculate nucleus, cholinergic, monoaminergic, and enteric neurons. These findings provide a guide for targeted experiments to advance our understanding of the genetic underpinnings of depression.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wennie Wu ◽  
Derek Howard ◽  
Etienne Sibille ◽  
Leon French

AbstractMajor depressive disorder (MDD) is the most prevalent psychiatric disorder worldwide and affects individuals of all ages. It causes significant psychosocial impairments and is a major cause of disability. A recent consortium study identified 102 genetic variants and 269 genes associated with depression. To provide targets for future depression research, we prioritized these recently identified genes using expression data. We examined the differential expression of these genes in three studies that profiled gene expression of MDD cases and controls across multiple brain regions. In addition, we integrated anatomical expression information to determine which brain regions and transcriptomic cell types highly express the candidate genes. We highlight 12 of the 269 genes with the most consistent differential expression: MANEA, UBE2M, CKB, ITPR3, SPRY2, SAMD5, TMEM106B, ZC3H7B, LST1, ASXL3, ZNF184 and HSPA1A. The majority of these top genes were found to have sex-specific differential expression. We place greater emphasis on ZNF184 as it is the top gene in a more conservative analysis of the 269. Specifically, the differential expression of ZNF184 was strongest in subcortical regions in males and females. Anatomically, our results suggest the importance of the dorsal lateral geniculate nucleus, cholinergic, monoaminergic and enteric neurons. These findings provide a guide for targeted experiments to advance our understanding of the genetic underpinnings of depression.


2017 ◽  
Author(s):  
Mats Nagel ◽  
Philip R Jansen ◽  
Sven Stringer ◽  
Kyoko Watanabe ◽  
Christiaan A de Leeuw ◽  
...  

Neuroticism is an important risk factor for psychiatric traits including depression1, anxiety2,3, and schizophrenia4–6. Previous genome-wide association studies7–12 (GWAS) reported 16 genomic loci10–12. Here we report the largest neuroticism GWAS meta-analysis to date (N=449,484), and identify 136 independent genome-wide significant loci (124 novel), implicating 599 genes. Extensive functional follow-up analyses show enrichment in several brain regions and involvement of specific cell-types, including dopaminergic neuroblasts (P=3×10-8), medium spiny neurons (P=4×10-8) and serotonergic neurons (P=1×10-7). Gene-set analyses implicate three specific pathways: neurogenesis (P=4.4×10-9), behavioural response to cocaine processes (P=1.84×10-7), and axon part (P=5.26×10-8). We show that neuroticism’s genetic signal partly originates in two genetically distinguishable subclusters13 (depressed affect and worry, the former being genetically strongly related to depression, rg=0.84), suggesting distinct causal mechanisms for subtypes of individuals. These results vastly enhance our neurobiological understanding of neuroticism, and provide specific leads for functional follow-up experiments.


2018 ◽  
Author(s):  
David M. Howard ◽  
Mark J. Adams ◽  
Toni-Kim Clarke ◽  
Jonathan D. Hafferty ◽  
Jude Gibson ◽  
...  

AbstractMajor depression is a debilitating psychiatric illness that is typically associated with low mood, anhedonia and a range of comorbidities. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximise sample size, we meta-analysed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 gene-sets associated with depression, including both genes and gene-pathways associated with synaptic structure and neurotransmission. Further evidence of the importance of prefrontal brain regions in depression was provided by an enrichment analysis. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant following multiple testing correction. Based on the putative genes associated with depression this work also highlights several potential drug repositioning opportunities. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding aetiology and developing new treatment approaches.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Aitana Alonso-Gonzalez ◽  
Manuel Calaza ◽  
Cristina Rodriguez-Fontenla ◽  
Angel Carracedo

Abstract Background Attention-Deficit Hyperactivity Disorder (ADHD) is a complex neurodevelopmental disorder (NDD) which may significantly impact on the affected individual’s life. ADHD is acknowledged to have a high heritability component (70–80%). Recently, a meta-analysis of GWAS (Genome Wide Association Studies) has demonstrated the association of several independent loci. Our main aim here, is to apply PASCAL (pathway scoring algorithm), a new gene-based analysis (GBA) method, to the summary statistics obtained in this meta-analysis. PASCAL will take into account the linkage disequilibrium (LD) across genomic regions in a different way than the most commonly employed GBA methods (MAGMA or VEGAS (Versatile Gene-based Association Study)). In addition to PASCAL analysis a gene network and an enrichment analysis for KEGG and GO terms were carried out. Moreover, GENE2FUNC tool was employed to create gene expression heatmaps and to carry out a (DEG) (Differentially Expressed Gene) analysis using GTEX v7 and BrainSpan data. Results PASCAL results have revealed the association of new loci with ADHD and it has also highlighted other genes previously reported by MAGMA analysis. PASCAL was able to discover new associations at a gene level for ADHD: FEZF1 (p-value: 2.2 × 10− 7) and FEZF1-AS1 (p-value: 4.58 × 10− 7). In addition, PASCAL has been able to highlight association of other genes that share the same LD block with some previously reported ADHD susceptibility genes. Gene network analysis has revealed several interactors with the associated ADHD genes and different GO and KEGG terms have been associated. In addition, GENE2FUNC has demonstrated the existence of several up and down regulated expression clusters when the associated genes and their interactors were considered. Conclusions PASCAL has been revealed as an efficient tool to extract additional information from previous GWAS using their summary statistics. This study has identified novel ADHD associated genes that were not previously reported when other GBA methods were employed. Moreover, a biological insight into the biological function of the ADHD associated genes across brain regions and neurodevelopmental stages is provided.


2018 ◽  
Vol 4 (5) ◽  
pp. e266 ◽  
Author(s):  
Luke W. Bonham ◽  
Natasha Z.R. Steele ◽  
Celeste M. Karch ◽  
Claudia Manzoni ◽  
Ethan G. Geier ◽  
...  

ObjectiveThe neuroanatomical profile of behavioral variant frontotemporal dementia (bvFTD) suggests a common biological etiology of disease despite disparate pathologic causes; we investigated the genetic underpinnings of this selective regional vulnerability to identify new risk factors for bvFTD.MethodsWe used recently developed analytical techniques designed to address the limitations of genome-wide association studies to generate a protein interaction network of 63 bvFTD risk genes. We characterized this network using gene expression data from healthy and diseased human brain tissue, evaluating regional network expression patterns across the lifespan as well as the cell types and biological processes most affected in bvFTD.ResultsWe found that bvFTD network genes show enriched expression across the human lifespan in vulnerable neuronal populations, are implicated in cell signaling, cell cycle, immune function, and development, and are differentially expressed in pathologically confirmed frontotemporal lobar degeneration cases. Five of the genes highlighted by our differential expression analyses, BAIAP2, ERBB3, POU2F2, SMARCA2, and CDC37, appear to be novel bvFTD risk loci.ConclusionsOur findings suggest that the cumulative burden of common genetic variation in an interacting protein network expressed in specific brain regions across the lifespan may influence susceptibility to bvFTD.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jayaram Vijayakrishnan ◽  
Maoxiang Qian ◽  
James B. Studd ◽  
Wenjian Yang ◽  
Ben Kinnersley ◽  
...  

AbstractThere is increasing evidence for a strong inherited genetic basis of susceptibility to acute lymphoblastic leukaemia (ALL) in children. To identify new risk variants for B-cell ALL (B-ALL) we conducted a meta-analysis with four GWAS (genome-wide association studies), totalling 5321 cases and 16,666 controls of European descent. We herein describe novel risk loci for B-ALL at 9q21.31 (rs76925697, P = 2.11 × 10−8), for high-hyperdiploid ALL at 5q31.1 (rs886285, P = 1.56 × 10−8) and 6p21.31 (rs210143 in BAK1, P = 2.21 × 10−8), and ETV6-RUNX1 ALL at 17q21.32 (rs10853104 in IGF2BP1, P = 1.82 × 10−8). Particularly notable are the pleiotropic effects of the BAK1 variant on multiple haematological malignancies and specific effects of IGF2BP1 on ETV6-RUNX1 ALL evidenced by both germline and somatic genomic analyses. Integration of GWAS signals with transcriptomic/epigenomic profiling and 3D chromatin interaction data for these leukaemia risk loci suggests deregulation of B-cell development and the cell cycle as central mechanisms governing genetic susceptibility to ALL.


2017 ◽  
Author(s):  
Jonathan R. I. Coleman ◽  
Julien Bryois ◽  
Héléna A. Gaspar ◽  
Philip R. Jansen ◽  
Jeanne Savage ◽  
...  

AbstractVariance in IQ is associated with a wide range of health outcomes, and 1% of the population are affected by intellectual disability. Despite a century of research, the fundamental neural underpinnings of intelligence remain unclear. We integrate results from genome-wide association studies (GWAS) of intelligence with brain tissue and single cell gene expression data to identify tissues and cell types associated with intelligence. GWAS data for IQ (N = 78,308) were meta-analyzed with an extreme-trait cohort of 1,247 individuals with mean IQ ∼170 and 8,185 controls. Genes associated with intelligence implicate pyramidal neurons of the somatosensory cortex and CA1 region of the hippocampus, and midbrain embryonic GABAergic neurons. Tissue-specific analyses find the most significant enrichment for frontal cortex brain expressed genes. These results suggest specific neuronal cell types and genes may be involved in intelligence and provide new hypotheses for neuroscience experiments using model systems.


2017 ◽  
Author(s):  
Adel Boueiz ◽  
Robert Chase ◽  
Andrew Lamb ◽  
Sool Lee ◽  
Zun Zar Chi Naing ◽  
...  

ABSTRACTBackgroundSeveral genetic risk loci associated with emphysema apico-basal distribution (EABD) have been identified through genome-wide association studies (GWAS), but the biological functions of these variants are unknown. To characterize gene regulatory functions of EABD-associated variants, we integrated EABD GWAS results with 1) a multi-tissue panel of expression quantitative trait loci (eQTL) from subjects with COPD and the GTEx project and 2) epigenomic marks from 127 cell types in the Roadmap Epigenomics project. Functional validation was performed for a variant near ACVR1B.ResultsSNPs from 168 loci with P-values<5x10-5 in the largest GWAS meta-analysis of EABD (Boueiz A. et al, AJRCCM 2017) were analyzed. 54 loci overlapped eQTL regions from our multi-tissue panel, and 7 of these loci showed a high probability of harboring a single, shared GWAS and eQTL causal variant (colocalization posterior probability≥0.9). 17 cell types exhibited greater than expected overlap between EABD loci and DNase-I hypersensitive peaks, DNaseI hotspots, enhancer marks, or digital DNaseI footprints (permutation P-value < 0.05), with the strongest enrichment observed in CD4+, CD8+, and regulatory T cells. A region near ACVR1B demonstrated significant colocalization with a lung eQTL and overlapped DNase-I hypersensitive regions in multiple cell types, and reporter assays in human bronchial epithelial cells confirmed allele-specific regulatory activity for the lead variant, rs7962469.ConclusionsIntegrative analysis highlights candidate causal genes, regulatory variants, and cell types that may contribute to the pathogenesis of emphysema distribution. These findings will enable more accurate functional validation studies and better understanding of emphysema distribution biology.


2021 ◽  
Author(s):  
Minako Imamura ◽  
Atsushi Takahashi ◽  
Masatoshi Matsunami ◽  
Momoko Horikoshi ◽  
Minoru Iwata ◽  
...  

Abstract Several reports have suggested that genetic susceptibility contributes to the development and progression of diabetic retinopathy. We aimed to identify genetic loci that confer susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. We analysed 5 790 508 single nucleotide polymorphisms (SNPs) in 8880 Japanese patients with type 2 diabetes, 4839 retinopathy cases and 4041 controls, as well as 2217 independent Japanese patients with type 2 diabetes, 693 retinopathy cases, and 1524 controls. The results of these two genome-wide association studies (GWAS) were combined with an inverse variance meta-analysis (Stage-1), followed by de novo genotyping for the candidate SNP loci (p &lt; 1.0 × 10−4) in an independent case–control study (Stage-2, 2260 cases and 723 controls). After combining the association data (Stage-1 and -2) using meta-analysis, the associations of two loci reached a genome-wide significance level: rs12630354 near STT3B on chromosome 3, p = 1.62 × 10−9, odds ratio (OR) = 1.17, 95% confidence interval (CI) 1.11–1.23, and rs140508424 within PALM2 on chromosome 9, p = 4.19 × 10−8, OR = 1.61, 95% CI 1.36–1.91. However, the association of these two loci were not replicated in Korean, European, or African American populations. Gene-based analysis using Stage-1 GWAS data identified a gene-level association of EHD3 with susceptibility to diabetic retinopathy (p = 2.17 × 10−6). In conclusion, we identified two novel SNP loci, STT3B and PALM2, and a novel gene, EHD3, that confers susceptibility to diabetic retinopathy; however, further replication studies are required to validate these associations.


Sign in / Sign up

Export Citation Format

Share Document