scholarly journals COTAN: Co-expression Table Analysis for scRNA-seq data

2020 ◽  
Author(s):  
S. G. Galfrè ◽  
F. Morandin ◽  
M. Pietrosanto ◽  
F. Cremisi ◽  
M. Helmer-Citterich

AbstractEstimating co-expression of cell identity factors in single-cell transcriptomes is crucial to decode new mechanisms of cell state transition. Due to the intrinsic low efficiency of single-cell mRNA profiling, novel computational approaches are required to accurately infer gene co-expression in a cell population. We introduce COTAN, a statistical and computational method to analyze the co-expression of gene pairs at single cell level, providing the foundation for single-cell gene interactome analysis.

RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 4886-4893 ◽  
Author(s):  
Hao Sun ◽  
Tim Olsen ◽  
Jing Zhu ◽  
Jianguo Tao ◽  
Brian Ponnaiya ◽  
...  

Gene expression analysis at the single-cell level is critical to understanding variations among cells in heterogeneous populations.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (18) ◽  
pp. 3629-3639 ◽  
Author(s):  
Tríona M. O'Connell ◽  
Damien King ◽  
Chandra K. Dixit ◽  
Brendan O'Connor ◽  
Dermot Walls ◽  
...  

It is now widely recognised that the earliest changes that occur on a cell when it is stressed or becoming diseased are alterations in its surface glycosylation.


2020 ◽  
Author(s):  
Fares Saïdi ◽  
Nicolas Y. Jolivet ◽  
David J. Lemon ◽  
Arnaldo Nakamura ◽  
Anthony G. Garza ◽  
...  

ABSTRACTBacterial surface exopolysaccharide (EPS) layers are key determinants of biofilm establishment and maintenance, leading to the formation of higher-order 3D structures conferring numerous survival benefits to a cell community. In addition to a specific EPS glycocalyx, we recently revealed that the social δ-proteobacterium Myxococcus xanthus secretes a novel biosurfactant polysaccharide (BPS), with both EPS and BPS polymers required for type IV pilus (T4P)-dependent swarm expansion via spatio-specific biofilm expression profiles. Thus the synergy between EPS and BPS secretion somehow modulates the multicellular lifecycle of M. xanthus. Herein, we demonstrate that BPS secretion functionally-activates the EPS glycocalyx via its destabilization, fundamentally altering the characteristics of the cell surface. This impacts motility behaviours at the single-cell level as well as the aggregative capacity of cells in groups via EPS fibril formation and T4P assembly. These changes modulate structuration of swarm biofilms via cell layering, likely contributing to the formation of internal swarm polysaccharide architecture. Together, these data reveal the manner by which the interplay between two secreted polymers induces single-cell changes that modulate swarm biofilm communities.


2021 ◽  
Author(s):  
Qiang Li ◽  
Zuwan Lin ◽  
Ren Liu ◽  
Xin Tang ◽  
Jiahao Huang ◽  
...  

AbstractPairwise mapping of single-cell gene expression and electrophysiology in intact three-dimensional (3D) tissues is crucial for studying electrogenic organs (e.g., brain and heart)1–5. Here, we introducein situelectro-sequencing (electro-seq), combining soft bioelectronics within situRNA sequencing to stably map millisecond-timescale cellular electrophysiology and simultaneously profile a large number of genes at single-cell level across 3D tissues. We appliedin situelectro-seq to 3D human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) patches, precisely registering the CM gene expression with electrophysiology at single-cell level, enabling multimodalin situanalysis. Such multimodal data integration substantially improved the dissection of cell types and the reconstruction of developmental trajectory from spatially heterogeneous tissues. Using machine learning (ML)-based cross-modal analysis,in situelectro-seq identified the gene-to-electrophysiology relationship over the time course of cardiac maturation. Further leveraging such a relationship to train a coupled autoencoder, we demonstrated the prediction of single-cell gene expression profile evolution using long-term electrical measurement from the same cardiac patch or 3D millimeter-scale cardiac organoids. As exemplified by cardiac tissue maturation,in situelectro-seq will be broadly applicable to create spatiotemporal multimodal maps and predictive models in electrogenic organs, allowing discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.


2021 ◽  
Vol 27 ◽  
Author(s):  
Sun Shin ◽  
Youn Jin Choi ◽  
Seung-Hyun Jung ◽  
Yeun-Jun Chung ◽  
Sug Hyung Lee

Teratoma is a type of germ cell tumor that originates from totipotential germ cells that are present in gonads, which can differentiate into any of the cell types found in adult tissues. Ovarian teratomas are usually mature cystic teratomas (OMCTs, also known as dermoid cysts). Chromosome studies in OMCTs show that the chromosomes are uniformly homozygous with karyotype of 46, XX, indicating that they may be parthenogenic tumors that arise from a single ovum after thefirst meiotic division. However, the tissues in OMCTs have been known to be morphologically and immunophenotypically identical to the orthotopic tissues. Currently, expression profiles of tissue components in OMCTs are not known. To identify whether OMCT tissues are expressionally similar to or different from the orthotopic tissues, we adopted single-cell RNA-sequencing (scRNA-seq), and analyzed transcriptomes of individual cells in heterogenous tissues of two OMCTs. We found that transcriptome profiles of the OMCTs at single cell level were not significantly different from those of normal cells in orthotopic locations. The present data suggest that parthenogeneticlly altered OMCTs may not alter expression profiles of inrivirual tissue components in OMCTs.


GigaScience ◽  
2020 ◽  
Vol 9 (11) ◽  
Author(s):  
Fatemeh Behjati Ardakani ◽  
Kathrin Kattler ◽  
Tobias Heinen ◽  
Florian Schmidt ◽  
David Feuerborn ◽  
...  

Abstract Background Single-cell RNA sequencing is a powerful technology to discover new cell types and study biological processes in complex biological samples. A current challenge is to predict transcription factor (TF) regulation from single-cell RNA data. Results Here, we propose a novel approach for predicting gene expression at the single-cell level using cis-regulatory motifs, as well as epigenetic features. We designed a tree-guided multi-task learning framework that considers each cell as a task. Through this framework we were able to explain the single-cell gene expression values using either TF binding affinities or TF ChIP-seq data measured at specific genomic regions. TFs identified using these models could be validated by the literature. Conclusion Our proposed method allows us to identify distinct TFs that show cell type–specific regulation. This approach is not limited to TFs but can use any type of data that can potentially be used in explaining gene expression at the single-cell level to study factors that drive differentiation or show abnormal regulation in disease. The implementation of our workflow can be accessed under an MIT license via https://github.com/SchulzLab/Triangulate.


2017 ◽  
Author(s):  
Wenfa Ng

Single cell studies increasing reveal myriad cellular subtypes beyond those postulated or observed through optical and fluorescence microscopy as well as DNA sequencing studies. While gene sequencing at the single cell level offer a path towards illuminating, in totality, the different subtypes of cells present, the technique nevertheless does not offer answers concerning the functional repertoire of the cell, which is defined by the collection of RNA transcribed from the genome. Known as the transcriptome, transcribed RNA defines the function of the cell as proteins or effector RNA molecules, while the genome is the collection of all information endowed in the cell type, expressed or not. Thus, a particular cell state, lineage, cell fate or cellular differentiation is more fully depicted by transcriptomic analysis compared to delineating the genomic context at the single cell level. While conceptually sound and could be analysed by contemporary single cell RNA sequencing technology and data analysis pipelines, the relative instability of RNA in view of RNase in the environment would make sample preparation particularly challenging, where degradation of cellular RNA by extraneous factors could provide a misinterpretation of specific functions available to a cell type. Hence, RNA as the de facto functional molecule of the cell defining the proteomics landscape as well as effector RNA repertoire, meant that RNA transcriptomics at the single cell level is the way forward if the goal is to understand all available cell types, lineage, cell fate and cellular differentiation. Given that a cell state is defined by the functions encoded by functional molecules such as proteins and RNA, single cell RNA sequencing offers a larger contextual basis for understanding cellular decision making and functions, for example, proteins are increasingly known to work in concert with RNA effector molecules in enabling a function. Hence, providing a view of the diverse cell types and lineages present in a body, single cell RNA sequencing is only hampered by the high sensitivity required to analyse the small amount of RNA available in single cells, as well as the perennial problem of RNA studies: how to prevent or reduce RNA degradation by environmental RNase enzymes. Ability to reduce RNA degradation would provide the cell biologist a unique view of the functional landscape of different cells in the body through the language of RNA.


2017 ◽  
Author(s):  
Wenfa Ng

Single cell studies increasing reveal myriad cellular subtypes beyond those postulated or observed through optical and fluorescence microscopy as well as DNA sequencing studies. While gene sequencing at the single cell level offer a path towards illuminating, in totality, the different subtypes of cells present, the technique nevertheless does not offer answers concerning the functional repertoire of the cell, which is defined by the collection of RNA transcribed from the genome. Known as the transcriptome, transcribed RNA defines the function of the cell as proteins or effector RNA molecules, while the genome is the collection of all information endowed in the cell type, expressed or not. Thus, a particular cell state, lineage, cell fate or cellular differentiation is more fully depicted by transcriptomic analysis compared to delineating the genomic context at the single cell level. While conceptually sound and could be analysed by contemporary single cell RNA sequencing technology and data analysis pipelines, the relative instability of RNA in view of RNase in the environment would make sample preparation particularly challenging, where degradation of cellular RNA by extraneous factors could provide a misinterpretation of specific functions available to a cell type. Hence, RNA as the de facto functional molecule of the cell defining the proteomics landscape as well as effector RNA repertoire, meant that RNA transcriptomics at the single cell level is the way forward if the goal is to understand all available cell types, lineage, cell fate and cellular differentiation. Given that a cell state is defined by the functions encoded by functional molecules such as proteins and RNA, single cell RNA sequencing offers a larger contextual basis for understanding cellular decision making and functions, for example, proteins are increasingly known to work in concert with RNA effector molecules in enabling a function. Hence, providing a view of the diverse cell types and lineages present in a body, single cell RNA sequencing is only hampered by the high sensitivity required to analyse the small amount of RNA available in single cells, as well as the perennial problem of RNA studies: how to prevent or reduce RNA degradation by environmental RNase enzymes. Ability to reduce RNA degradation would provide the cell biologist a unique view of the functional landscape of different cells in the body through the language of RNA.


2008 ◽  
Vol 48 (supplement) ◽  
pp. S109
Author(s):  
Tomoyuki Kaneko ◽  
Fumimasa Nomura ◽  
Yuki Tomoe ◽  
Ikurou Suzuki ◽  
Junko Hayashi ◽  
...  

2019 ◽  
Author(s):  
Yannick F. Fuchs ◽  
Virag Sharma ◽  
Anne Eugster ◽  
Gloria Kraus ◽  
Robert Morgenstern ◽  
...  

AbstractCD8+ T cells are important effectors of adaptive immunity against pathogens, tumors and self antigens. Here, we asked how human cognate antigen-responsive CD8+ T cells and their receptors could be identified in unselected single-cell gene expression data. Single-cell RNA sequencing and qPCR of dye-labelled antigen-specific cells identified large gene sets that were congruently up- or downregulated in virus-responsive CD8+ T cells under different antigen presentation conditions. Combined expression of TNFRSF9, XCL1, XCL2, and CRTAM was the most distinct marker of virus-responsive cells on a single-cell level. Using transcriptomic data, we developed a machine learning-based classifier that provides sensitive and specific detection of virus-responsive CD8+ T cells from unselected populations. Gene response profiles of CD8+ T cells specific for the autoantigen islet-specific glucose-6-phosphatase catalytic subunit-related protein differed markedly from virus-specific cells. These findings provide single-cell gene expression parameters for comprehensive identification of rare antigen-responsive cells and T cell receptors.One-sentence summaryIdentification of genes, gene sets, and development of a machine learning-based classifier that distinguishes antigen-responsive CD8+ T cells on a single-cell level.


Sign in / Sign up

Export Citation Format

Share Document