scholarly journals Retrograde transport defects in Munc18-1 null neurons explain abnormal Golgi morphology

2020 ◽  
Author(s):  
Annemiek A. van Berkel ◽  
Tatiana C. Santos ◽  
Hesho Shaweis ◽  
Jan R.T. van Weering ◽  
Ruud F. Toonen ◽  
...  

AbstractLoss of the exocytic Sec1/MUNC18 protein MUNC18-1 or its t-SNARE partners SNAP25 and syntaxin-1 results in rapid, cell-autonomous and unexplained neurodegeneration, which is independent of their known role in synaptic vesicle exocytosis. cis-Golgi abnormalities are the earliest cellular phenotypes before degeneration occurs. Here, we investigated whether these Golgi abnormalities cause defects in the constitutive and regulated secretory pathway that may explain neurodegeneration. Electron microscopy confirmed that loss of MUNC18-1 expression results in a smaller cis-Golgi. In addition, we now show that medial-Golgi and the trans-Golgi Network are also affected. However, stacking and cisternae ultrastructure of the Golgi were normal. Overall ultrastructure of null mutant neurons was remarkably normal just hours before cell death occurred. Anterograde ER-to-Golgi and Golgi exit of endogenous and exogenous proteins were normal. In contrast, loss of MUNC18-1 caused reduced retrograde Cholera Toxin transport from the plasma membrane to the Golgi. In addition, MUNC18-1-deficiency resulted in abnormalities in retrograde TrkB trafficking. We conclude that MUNC18-1 deficient neurons have normal anterograde yet reduced retrograde transport to the Golgi. This imbalance in transport routes provides a plausible explanation for the observed Golgi abnormalities and cell death in MUNC18-1 deficient neurons.Significance statementLoss of MUNC18-1 or its t-SNAREs SNAP25 and syntaxin-1 leads to massive, yet unexplained, neurodegeneration. Previous research showed that Golgi abnormalities are the earliest, shared phenotype. Golgi abnormalities are also an early feature in neurodegenerative diseases, such as Alzheimer’s Disease or Amyotrophic Lateral Sclerosis. This study elucidates the mechanism underlying the Golgi phenotype upon loss of MUNC18-1. By systematically assessing transport routes to and from the Golgi, we show that retrograde endosome-to-Golgi, but not anterograde transport from the Golgi, is disturbed. This imbalance in transport routes provides a plausible explanation for the Golgi phenotype, and may explain the neurodegeneration. The findings in this study contributes to new insights in cellular mechanisms of neurodegeneration.

2001 ◽  
Vol 12 (10) ◽  
pp. 3175-3190 ◽  
Author(s):  
Seon-Ah Ha ◽  
Jeremy T. Bunch ◽  
Hiroko Hama ◽  
Daryll B. DeWald ◽  
Steven F. Nothwehr

Localization of resident membrane proteins to the yeasttrans-Golgi network (TGN) involves both their retrieval from a prevacuolar/endosomal compartment (PVC) and a “slow delivery” mechanism that inhibits their TGN-to-PVC transport. A screen for genes required for the slow delivery mechanism uncoveredINP53, a gene encoding a phosphoinositide phosphatase. A retrieval-defective model TGN protein, A(F→A)-ALP, was transported to the vacuole in inp53 mutants approximately threefold faster than in wild type. Inp53p appears to function in a process distinct from PVC retrieval because combining inp53 with mutations that block retrieval resulted in a much stronger phenotype than either mutation alone. In vps27 strains defective for both anterograde and retrograde transport out of the PVC, a loss of Inp53p function markedly accelerated the rate of transport of TGN residents A-ALP and Kex2p into the PVC. Inp53p function is cargo specific because a loss of Inp53p function had no effect on the rate of Vps10p transport to the PVC in vps27 cells. The rate of early secretory pathway transport appeared to be unaffected ininp53 mutants. Cell fractionation experiments suggested that Inp53p associates with Golgi or endosomal membranes. Taken together, these results suggest that a phosphoinositide signaling event regulates TGN-to-PVC transport of select cargo proteins.


1997 ◽  
Vol 323 (1) ◽  
pp. 265-271 ◽  
Author(s):  
Lixin SONG ◽  
Lloyd D. FRICKER

Carboxypeptidase E (CPE) is initially synthesized as a larger precursor containing an additional 14-residue propeptide that is highly conserved between human and rat. Previous studies have established that the proenzyme is enzymically active and that deletion of the pro region does not affect the expression of the active enzyme. In the present study the function of the pro region was examined both by deleting this region from CPE and by attaching this region to the N-terminus of albumin. CPE lacking the pro region is sorted into the regulated secretory pathway in AtT-20 cells, based on confocal microscopy and examination of the stimulated secretion of the protein. Stimulation of AtT-20 cells with either forskolin or phorbol 12-myristate 13-acetate induces the secretion of wild-type CPE and of CPE lacking the pro region to similar extents, indicating a similar efficiency of sorting of the mutant. When the pro region of proalbumin is replaced with the pro region of CPE followed by expression in AtT-20 cells, the protein is not sorted into the regulated pathway, based on the lack of stimulated secretion. Confocal microscopy suggests that the proCPE/albumin protein is retained in the endoplasmic reticulum to a greater extent than is proalbumin. Pulse-chase analysis indicates that the pro region of CPE is not efficiently removed from the N-terminus of albumin, and the small amount of propeptide cleavage that does occur takes place soon before secretion of the protein. In contrast, confocal microscopy indicates that the majority of the propeptide is removed from CPE, and that this cleavage occurs in the trans-Golgi network or soon after sorting into the secretory vesicles. Taken together, these results suggest that the pro region of CPE is not required for the expression or intracellular routeing of this protein.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Rebekah Elizabeth Mahoney ◽  
Jorge Azpurua ◽  
Benjamin A Eaton

Altered insulin signaling has been linked to widespread nervous system dysfunction including cognitive dysfunction, neuropathy and susceptibility to neurodegenerative disease. However, knowledge of the cellular mechanisms underlying the effects of insulin on neuronal function is incomplete. Here, we show that cell autonomous insulin signaling within the Drosophila CM9 motor neuron regulates the release of neurotransmitter via alteration of the synaptic vesicle fusion machinery. This effect of insulin utilizes the FOXO-dependent regulation of the thor gene, which encodes the Drosophila homologue of the eif-4e binding protein (4eBP). A critical target of this regulatory mechanism is Complexin, a synaptic protein known to regulate synaptic vesicle exocytosis. We find that the amounts of Complexin protein observed at the synapse is regulated by insulin and genetic manipulations of Complexin levels support the model that increased synaptic Complexin reduces neurotransmission in response to insulin signaling.


2000 ◽  
Vol 78 (3) ◽  
pp. 181-191 ◽  
Author(s):  
Mercedes Blázquez ◽  
Kathleen I Shennan

Targeting proteins to their correct cellular location is crucial for their biological function. In neuroendocrine cells, proteins can be secreted by either the constitutive or the regulated secretory pathways but the mechanism(s) whereby proteins are sorted into either pathway is unclear. In this review we discuss the possibility that sorting is either an active process occurring at the level of the trans-Golgi network, or that sorting occurs passively in the immature granules. The possible involvement of protein-lipid interactions in the sorting process is also raised. Key words: lipid rafts, regulated secretory pathway, secretion, sorting receptors, sorting signals, trans-Golgi network.


2016 ◽  
Vol 90 (19) ◽  
pp. 8891-8905 ◽  
Author(s):  
Gilad Sivan ◽  
Andrea S. Weisberg ◽  
Jeffrey L. Americo ◽  
Bernard Moss

ABSTRACTThe anterograde pathway, from the endoplasmic reticulum through thetrans-Golgi network to the cell surface, is utilized bytrans-membrane and secretory proteins. The retrograde pathway, which directs traffic in the opposite direction, is used following endocytosis of exogenous molecules and recycling of membrane proteins. Microbes exploit both routes: viruses typically use the anterograde pathway for envelope formation prior to exiting the cell, whereas ricin and Shiga-like toxins and some nonenveloped viruses use the retrograde pathway for cell entry. Mining a human genome-wide RNA interference (RNAi) screen revealed a need for multiple retrograde pathway components for cell-to-cell spread of vaccinia virus. We confirmed and extended these results while discovering that retrograde trafficking was required for virus egress rather than entry. Retro-2, a specific retrograde trafficking inhibitor of protein toxins, potently prevented spread of vaccinia virus as well as monkeypox virus, a human pathogen. Electron and confocal microscopy studies revealed that Retro-2 prevented wrapping of virions with an additional double-membrane envelope that enables microtubular transport, exocytosis, and actin polymerization. The viral B5 and F13 protein components of this membrane, which are required for wrapping, normally colocalize in thetrans-Golgi network. However, only B5 traffics through the secretory pathway, suggesting that F13 uses another route to thetrans-Golgi network. The retrograde route was demonstrated by finding that F13 was largely confined to early endosomes and failed to colocalize with B5 in the presence of Retro-2. Thus, vaccinia virus makes novel use of the retrograde transport system for formation of the viral wrapping membrane.IMPORTANCEEfficient cell-to-cell spread of vaccinia virus and other orthopoxviruses depends on the wrapping of infectious particles with a double membrane that enables microtubular transport, exocytosis, and actin polymerization. Interference with wrapping or subsequent steps results in severe attenuation of the virus. Some previous studies had suggested that the wrapping membrane arises from thetrans-Golgi network, whereas others suggested an origin from early endosomes. Some nonenveloped viruses use retrograde trafficking for entry into the cell. In contrast, we provided evidence that retrograde transport from early endosomes to thetrans-Golgi network is required for the membrane-wrapping step in morphogenesis of vaccinia virus and egress from the cell. The potentin vitroinhibition of this step by the drug Retro-2 suggests that derivatives with enhanced pharmacological properties might serve as useful antipoxviral agents.


2001 ◽  
Vol 114 (20) ◽  
pp. 3695-3704 ◽  
Author(s):  
Rodrigo Bustos ◽  
E. Robert Kolen ◽  
Lelita Braiterman ◽  
Anthony J. Baines ◽  
Fred S. Gorelick ◽  
...  

Synapsin I is abundant in neural tissues. Its phosphorylation is thought to regulate synaptic vesicle exocytosis in the pre-synaptic terminal by mediating vesicle tethering to the cytoskeleton. Using anti-synapsin antibodies, we detected an 85 kDa protein in liver cells and identified it as synapsin I. Like brain synapsin I, non-neuronal synapsin I is phosphorylated in vitro by protein kinase A and yields identical 32P-peptide maps after limited proteolysis. We also detected synapsin I mRNA in liver by northern blot analysis. These results indicate that the expression of synapsin I is more widespread than previously thought. Immunofluorescence analysis of several non-neuronal cell lines localizes synapsin I to a vesicular compartment adjacent to trans-elements of the Golgi complex, which is also labeled with antibodies against myosin II; no sub-plasma membrane synapsin I is evident. We conclude that synapsin I is present in epithelial cells and is associated with a trans-Golgi network-derived compartment; this localization suggests that it plays a role in modulating post-TGN trafficking pathways.


1990 ◽  
Vol 110 (1) ◽  
pp. 1-12 ◽  
Author(s):  
W S Sossin ◽  
J M Fisher ◽  
R H Scheller

Bioactive peptides cleaved from the egg-laying hormone precursor in the bag cell neurons of Aplysia are sorted into distinct dense core vesicle classes (DCVs). Bag cell prohormone processing can be divided into two stages, an initial cleavage occurring in a late Golgi compartment, which is not blocked by monensin, and later cleavages that occur within DCVs and are blocked by monensin. Prohormone intermediates are sorted in the trans-Golgi network. The large soma-specific DCVs turn over, while the small DCVs are transported to processes for regulated release. Thus, protein trafficking differentially regulates the levels and localization of multiple biologically active peptides derived from a common prohormone.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Soulmee Koh ◽  
Wongyoung Lee ◽  
Sang Myun Park ◽  
Sung Hyun Kim

AbstractIn addition to providing structural support, caveolin-1 (Cav1), a component of lipid rafts, including caveolae, in the plasma membrane, is involved in various cellular mechanisms, including signal transduction. Although pre-synaptic membrane dynamics and trafficking are essential cellular processes during synaptic vesicle exocytosis/synaptic transmission and synaptic vesicle endocytosis/synaptic retrieval, little is known about the involvement of Cav1 in synaptic vesicle dynamics. Here we demonstrate that synaptic vesicle exocytosis is significantly impaired in Cav1–knockdown (Cav1–KD) neurons. Specifically, the size of the synaptic recycled vesicle pool is modestly decreased in Cav1–KD synapses and the kinetics of synaptic vesicle endocytosis are somewhat slowed. Notably, neurons rescued by triple mutants of Cav1 lacking palmitoylation sites mutants show impairments in both synaptic transmission and retrieval. Collectively, our findings implicate Cav1 in activity-driven synaptic vesicle dynamics—both exocytosis and endocytosis—and demonstrate that palmitoylation of Cav1 is important for this activity.


2007 ◽  
Vol 18 (9) ◽  
pp. 3250-3263 ◽  
Author(s):  
Inés Fernández-Ulibarri ◽  
Montserrat Vilella ◽  
Francisco Lázaro-Diéguez ◽  
Elisabet Sarri ◽  
Susana E. Martínez ◽  
...  

Diacylglycerol is necessary for trans-Golgi network (TGN) to cell surface transport, but its functional relevance in the early secretory pathway is unclear. Although depletion of diacylglycerol did not affect ER-to-Golgi transport, it led to a redistribution of the KDEL receptor to the Golgi, indicating that Golgi-to-ER transport was perturbed. Electron microscopy revealed an accumulation of COPI-coated membrane profiles close to the Golgi cisternae. Electron tomography showed that the majority of these membrane profiles originate from coated buds, indicating a block in membrane fission. Under these conditions the Golgi-associated pool of ARFGAP1 was reduced, but there was no effect on the binding of coatomer or the membrane fission protein CtBP3/BARS to the Golgi. The addition of 1,2-dioctanoyl-sn-glycerol or the diacylglycerol analogue phorbol 12,13-dibutyrate reversed the effects of endogenous diacylglycerol depletion. Our findings implicate diacylglycerol in the retrograde transport of proteins from Golgi to the ER and suggest that it plays a critical role at a late stage of COPI vesicle formation.


Sign in / Sign up

Export Citation Format

Share Document