scholarly journals The Effect of a Ketogenic Diet and Synergy with Rapamycin in a Mouse Model of Breast Cancer

2020 ◽  
Author(s):  
Yiyu Zou ◽  
Susan Fineberg ◽  
Alexander Pearlman ◽  
Richard D. Feinman ◽  
Eugene J. Fine

AbstractBackgroundThe effects of diet in cancer, in general, and breast cancer in particular, are not well understood. Insulin inhibition in ketogenic, high fat diets, modulate downstream signaling molecules and are postulated to have therapeutic benefits. Obesity and diabetes have been associated with higher incidence of breast cancer. Addition of anti-cancer drugs together with diet is also not well studied.MethodsTwo diets, one ketogenic, the other standard mouse chow, were tested in a spontaneous breast cancer model in mice. The diets were implemented either with or without added rapamycin, an mTOR inhibitor and potential anti-cancer drug.ResultsBlood glucose and insulin concentrations in mice ingesting the ketogenic diet (KD) were significantly lower, whereas beta hydroxybutyrate (BHB) levels were significantly higher, respectively, than in mice on the standard diet (SD). Growth of primary breast tumors and lung metastases were inhibited, and lifespans were longer in the KD mice compared to mice on the SD (p<0.005). Rapamycin improved survival in both mouse diet groups, but when combined with the KD was more effective than when combined with the SD.ConclusionsThe study provides proof of principle that a ketogenic diet a) results in serum insulin reduction and ketosis in a spontaneous breast cancer mouse model; b) can serve as a therapeutic anti-cancer agent; and c) can enhance the effects of rapamycin, an anti-cancer drug, permitting dose reduction for comparable effect. Further, the ketogenic diet in this model produces superior cancer control than standard mouse chow whether with or without added rapamycin.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0233662
Author(s):  
Yiyu Zou ◽  
Susan Fineberg ◽  
Alexander Pearlman ◽  
Richard D. Feinman ◽  
Eugene J. Fine

Background The effects of diet in cancer, in general, and breast cancer in particular, are not well understood. Insulin inhibition in ketogenic, high fat diets, modulate downstream signaling molecules and are postulated to have therapeutic benefits. Obesity and diabetes have been associated with higher incidence of breast cancer. Addition of anti-cancer drugs together with diet is also not well studied. Methods Two diets, one ketogenic, the other standard mouse chow, were tested in a spontaneous breast cancer model in 34 mice. Subgroups of 3–9 mice were assigned, in which the diet were implemented either with or without added rapamycin, an mTOR inhibitor and potential anti-cancer drug. Results Blood glucose and insulin concentrations in mice ingesting the ketogenic diet (KD) were significantly lower, whereas beta hydroxybutyrate (BHB) levels were significantly higher, respectively, than in mice on the standard diet (SD). Growth of primary breast tumors and lung metastases were inhibited, and lifespans were longer in the KD mice compared to mice on the SD (p<0.005). Rapamycin improved survival in both mouse diet groups, but when combined with the KD was more effective than when combined with the SD. Conclusions The study provides proof of principle that a ketogenic diet a) results in serum insulin reduction and ketosis in a spontaneous breast cancer mouse model; b) can serve as a therapeutic anti-cancer agent; and c) can enhance the effects of rapamycin, an anti-cancer drug, permitting dose reduction for comparable effect. Further, the ketogenic diet in this model produces superior cancer control than standard mouse chow whether with or without added rapamycin.


Author(s):  
Lauren Marshall ◽  
Isabel Löwstedt ◽  
Paul Gatenholm ◽  
Joel Berry

The objective of this study was to create 3D engineered tissue models to accelerate identification of safe and efficacious breast cancer drug therapies. It is expected that this platform will dramatically reduce the time and costs associated with development and regulatory approval of anti-cancer therapies, currently a multi-billion dollar endeavor [1]. Existing two-dimensional (2D) in vitro and in vivo animal studies required for identification of effective cancer therapies account for much of the high costs of anti-cancer medications and health insurance premiums borne by patients, many of whom cannot afford it. An emerging paradigm in pharmaceutical drug development is the use of three-dimensional (3D) cell/biomaterial models that will accurately screen novel therapeutic compounds, repurpose existing compounds and terminate ineffective ones. In particular, identification of effective chemotherapies for breast cancer are anticipated to occur more quickly in 3D in vitro models than 2D in vitro environments and in vivo animal models, neither of which accurately mimic natural human tumor environments [2]. Moreover, these 3D models can be multi-cellular and designed with extracellular matrix (ECM) function and mechanical properties similar to that of natural in vivo cancer environments [3].


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e15069-e15069
Author(s):  
Yuzhu Zhang ◽  
Huachao Li ◽  
Hongyan Zhang ◽  
Xiaoyuan Liu ◽  
Tianyu Luo ◽  
...  

e15069 Background: Breast cancer has overtaken lung cancer as the most diagnosed cancer. Despite conventional treatment, metastases occur in 20-30% of patients, resulting in death. This study aims to screen of effective drugs by metastatic patient-derived organoid and the potential molecular mechanism. Methods: Breast Cancer patient-derived organoid (PDO) model was established from the patient who have multiple drug resistance, multiple visceral and contralateral breast metastases. The organoid morphologies was tested by hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). Then, pharmacological activity assay of 2370 natural product monomer (from Selleck) was performed with organoids. we modified the structure of harmine(HM) and screened the best active drugs. Cell proliferation assay and wound healing assay were used to detect LN435a anticancer activity in vitro. Orthotopic, Metastatic Xenograft and Patient-Derived tumor Xenograft(PDX) model of Breast Cancer were used to detect LN435a anticancer activity in vivo. In order to explore the anti-cancer target of LN435a, we used RNA transcriptome and proteomics sequencing. To further validate anti-cancer targets,TGFβ receptor 1 (TGFβR1), we used real-time quantitative qPCR, western blot, lentiviral packing and biolayer interferometry assay. To investigate whether LN435a inhabition of EMT and stem cell markers, we performed flow cytometry, immunohistochemistry and fluorescence. Results: We observe that organoid morphologies typically matched the histopathology, hormone receptor status, and HER2 status of the original tumor. In the first anti-cancer drug screening, HM showes the best effect on PDO. Because HM contains β-carbine alkaloids as the structural units, we designe a series of active drugs based on this and did anticancer screening. We find LN435a as one of the lead compounds exerting anti-metastatic activity in the nanomolar range in PDO and breast cancer cells. Proteomic and biochemical studies identify TGFβR1 as the direct target of LN435a. And then it inhibits EMT and stem cell markers. In parallel, loss of TGFβR1 or pharmacological inhibition of TGFβR1 by LN435a reduces breast cancer extravasation into the lung in an experimental metastasis mouse model, which reveals an essential role of TGFβR1 in breast cancer progression. Conclusions: Altogether, LN435a is a novel inhibitor of promising anti-tumor effects on breast cancer that works by blocking TGFβ signaling pathways.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Hao Zhi ◽  
Jianying Cui ◽  
Hongli Yang ◽  
Yonggang Zhang ◽  
Meng Zhu

Geraniol is an acyclic monoterpenoid compound, which exists widely in aromatic plants. Geraniol has antibacterial and anti-inflammatory effects. Recently, it has been found that geraniol has a strong effect on improving immune function and anti-tumor. Many experimental evidences support that geraniol has a good effect on the treatment or prevention of different types of tumors, such as breast cancer, lung cancer, liver cancer, pancreatic cancer, colon cancer, prostate cancer, etc. it also has a synergistic anti-cancer effect with many anti-cancer drugs, revealing the mechanism of its more complex anti-tumor pharmacological action System. In this review, we summarized a variety of anti-cancer signaling pathways and targets. Geraniol is considered to be a safe, effective and promising multi-target anti-cancer drug, which is expected to become an important force in the anti-cancer of traditional Chinese medicine.


RSC Advances ◽  
2018 ◽  
Vol 8 (31) ◽  
pp. 17060-17072 ◽  
Author(s):  
Genbei Wang ◽  
Yuanxue Liu ◽  
Yu Wang ◽  
Wenyuan Gao

Rhizoma Paridis saponins (RPS) as active parts ofP. polyphyllaSmith var.yunnanensishas been used as an anti-cancer drug in traditional Chinese medicine.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2448 ◽  
Author(s):  
Yuan Lyu ◽  
Steven Kopcho ◽  
Folnetti A. Alvarez ◽  
Bryson C. Okeoma ◽  
Chioma M. Okeoma

BST-2 is a novel driver of cancer progression whose expression confers oncogenic properties to breast cancer cells. As such, targeting BST-2 in tumors may be an effective therapeutic approach against breast cancer. Here, we sought to develop potent cytotoxic anti-cancer agent using the second-generation BST-2-based anti-adhesion peptide, B18, as backbone. To this end, we designed a series of five B18-derived peptidomimetics. Among these, B18L, a cationic amphiphilic α-helical peptidomimetic, was selected as the drug lead because it displayed superior anti-cancer activity against both drug-resistant and drug-sensitive cancer cells, with minimal toxicity on normal cells. Probing mechanism of action using molecular dynamics simulations, biochemical and membrane biophysics studies, we observed that B18L binds BST-2 and possesses membranolytic characteristics. Furthermore, molecular biology studies show that B18L dysregulates cancer signaling pathways resulting in decreased Src and Erk1/2 phosphorylation, increased expression of pro-apoptotic Bcl2 proteins, caspase 3 cleavage products, as well as processing of the caspase substrate, poly (ADP-ribose) polymerase-1 (PARP-1), to the characteristic apoptotic fragment. These data indicate that through the coordinated regulation of membrane, mitochondrial and signaling events, B18L executes cancer cell death and thus has the potential to be developed into a potent and selective anti-cancer compound.


2013 ◽  
Vol 20 (3) ◽  
pp. 391-401 ◽  
Author(s):  
Rosalyn D Ferguson ◽  
Emily J Gallagher ◽  
Dara Cohen ◽  
Aviva Tobin-Hess ◽  
Nyosha Alikhani ◽  
...  

The Her2 oncogene is expressed in ∼25% of human breast cancers and is associated with metastatic progression and poor outcome. Epidemiological studies report that breast cancer incidence and mortality rates are higher in women with type 2 diabetes. Here, we use a mouse model of Her2-mediated breast cancer on a background of hyperinsulinemia to determine how elevated circulating insulin levels affect Her2-mediated primary tumor growth and lung metastasis. Hyperinsulinemic (MKR+/+) mice were crossed with doxycycline-inducible Neu-NT (MTB/TAN) mice to produce the MTB/TAN/MKR+/+ mouse model. Both MTB/TAN and MTB/TAN/MKR+/+ mice were administered doxycycline in drinking water to induce Neu-NT mammary tumor formation. In tumor tissues removed at 2, 4, and 6 weeks of Neu-NT overexpression, we observed increased tumor mass and higher phosphorylation of the insulin receptor/IGF1 receptor, suggesting that activation of these receptors in conditions of hyperinsulinemia could contribute to the increased growth of mammary tumors. After 12 weeks on doxycycline, although no further increase in tumor weight was observed in MTB/TAN/MKR+/+ compared with MTB/TAN mice, the number of lung metastases was significantly higher in MTB/TAN/MKR+/+ mice compared with controls (MTB/TAN/MKR+/+ 16.41±4.18 vs MTB/TAN 5.36±2.72). In tumors at the 6-week time point, we observed an increase in vimentin, a cytoskeletal protein and marker of mesenchymal cells, associated with epithelial-to-mesenchymal transition and cancer-associated fibroblasts. We conclude that hyperinsulinemia in MTB/TAN/MKR+/+ mice resulted in larger primary tumors, with more mesenchymal cells and therefore more aggressive tumors with more numerous pulmonary metastases.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4879-4879
Author(s):  
Myoung Woo Lee ◽  
Hye Jin Kim ◽  
Dae Seong Kim ◽  
Meong Hi Son ◽  
Soo Hyun Lee ◽  
...  

Abstract Abstract 4879 Background. A hematological malignant animal model is an essential tool for evaluating efficacy of anti-cancer drugs and elucidating underlying mechanism of leukemogenesis. Intraperitoneal (IP) and intravenous (IV) xenograft of acute lymphoblastic leukemia (ALL) cells have limited capacity as in vivo anti-cancer drug screening system. Purpose. In this study, we aimed to establish an ALL animal model using NOD/SCID mouse and evaluate efficiency and sensitivity of the model as a preclinical drug screening system. Materials and Methods. Firefly luciferase (fLuc)-gene introduced ALL (ALL/fLuc) cell line and patient-originated ALL cells were transplanted into a tibia of NOD/SCID mouse. We conducted a comparative analysis of intra-bone marrow (IBMT) transplanted leukemia model with IP and IV transplantation of leukemic cells. Results. IBMT of ALL/fLuc cells effectively established a bioluminescent leukemia NOD/SCID mouse model. Upon comparison of IBMT model with IP and IV transplantation models, infusing identical number of ALL/fLuc cells into NOD/SCID mice resulted in IBMT model with evaluable bioluminescent signal, but not in IP and IV models. In IBMT model, bioluminescent signals of ALL/fLuc cells emitted from peripheral blood, tibia and infiltrated organs indicated that leukemia model was established. The changes in these signals' strength reflected dose-dependent cytotoxic effects of vincristine, which allowed leukemia model with evaluable bioluminescent signal to be utilized as a preclinical drug screening system. IBMT leukemia model was also established using primary ALL cells that can provide additional insights for the development of leukemia therapeutics. Conclusion. IBMT of ALL/fLuc cells enables development of leukemia mouse model with the greater bioluminescent sensitivity than IP and IV in NOD/SCID to evaluate candidate for development of anti-cancer drug. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document