scholarly journals Efficacy of moist heat decontamination against various pathogens for the reuse of N95 respirators in the COVID-19 emergency

Author(s):  
Ebru Oral ◽  
Keith K Wannomae ◽  
Dmitry Gil ◽  
Rachel Connolly ◽  
Joseph A Gardecki ◽  
...  

Decontamination of N95 respirators has become critical to alleviate PPE shortages for healthcare workers in the current COVID-19 emergency. The factors that are considered for the effective reuse of these masks are the fit, filter efficiency and decontamination/disinfection level both for SARS-CoV2, which is the causative virus for COVID-19, and for other organisms of concern in the hospital environment such as Staphylococcus aureus or Clostridium difficile.The efficacy of inactivation or eradication against various pathogens should be evaluated thoroughly to understand the level of afforded disinfection. Methods commonly used in the sterilization of medical devices such as ionizing radiation, vaporized hydrogen peroxide, and ethylene oxide can provide a high level of disinfection, defined as a 6 log10 reduction, against bacterial spores, considered the most resistant microorganisms. CDC guidance on the decontamination and reuse of N95s also includes the use of moist heat (60°C, 80% relative humidity, 15-30 min) as a possible recommendation based on literature showing preservation of fit efficiency and inactivation of H1N1 on spiked masks.Here, we explored the efficacy of using moist heat under these conditions as a decontamination method for an N95 respirator (3M 1860S, St. Paul, MN) against various pathogens with different resistance; enveloped RNA viruses, Gram (+/-) bacteria, and non-enveloped viruses.

Author(s):  
Ebru Oral ◽  
Keith K. Wannomae ◽  
Rachel L. Connolly ◽  
Joseph A. Gardecki ◽  
Hui Min Leung ◽  
...  

Decontamination of N95 respirators has become critical to alleviate PPE shortages for healthcare workers in the current COVID-19 emergency. The factors that are considered for the effective reuse of these masks are the fit, filter efficiency and decontamination/disinfection level both for SARS-CoV-2, which is the causative virus for COVID-19, and for other organisms of concern in the hospital environment such as Staphylococcus aureus or Clostridium difficile.In its guidance entitled ‘Recommendations for Sponsors Requesting EUAs for Decontamination and Bioburden Reduction Systems for Surgical Masks and Respirators During the Coronavirus Disease 2019 (COVID19) Public Health Emergency’ (May 2020)[1], the FDA recommends a 6-log10 reduction in either the most resistant bacterial spores for the system or in a mycobacterium species to authorize the use of a decontamination method of N95 respirators for single or multiple users. While the goal is primarily inactivation against SARS-CoV-2, testing of decontamination methods against the virus may not always be available. For decontamination methods considered for only single users, the recommendation is a 6-log10 reduction in the infective virus concentration of 3 non-enveloped viruses or in the concentration of two Gram (+) and two Gram (-) bacteria. Based on these recommendations, we explored the efficacy of vaporized H2O2 (VHP) treatment of N95 respirators against surrogate viruses covering a wide range of disinfection resistance for emergency decontamination and reuse to alleviate PPE shortages for healthcare workers in the COVID-19 emergency.


Author(s):  
Ebru Oral ◽  
Keith K. Wannomae ◽  
Rachel Connolly ◽  
Joseph Gardecki ◽  
Hui Min Leung ◽  
...  

There are a variety of methods routinely used in the sterilization of medical devices using hydrogen peroxide (H2O2) including vaporization, plasma generation and ionization. Many of these systems are used for sterilization and are validated for bioburden reduction using bacterial spores.Here, we explored the benefits of using vaporized H2O2 (VHP) treatment of N95 respirators for emergency decontamination and reuse to alleviate PPE shortages for healthcare workers in the COVID-19 emergency. The factors that are considered for the effective reuse of these respirators are the fit, the filter efficiency and the decontamination/disinfection level for SARS-CoV-2, which is the causative virus for COVID-19 and other organisms of concern in the hospital environment such as methicillin-resistant Staphylococcus aureus or Clostridium difficile. WE showed that the method did not affect fit or filter efficiency at least for one cycle and resulted in a >6 log reduction in bacterial spores and >3.8 log reduction in the infectious SARS-CoV2 load on N95 respirators.


2020 ◽  
Vol 54 ◽  
Author(s):  
Ian Theodore G. Cabaluna ◽  
Abigail F. Melicor

KEY FINDINGS Based on laboratory-based studies, ultraviolet germicidal irradiation (UVGI), microwave generated steam, warm moist heat, and hydrogen peroxide vapor (HPV) were able to reduce the load of influenza viruses (A/H5N1, H1N1) or G. stearothermophilus and at the same time maintain the integrity of N95 respirators. • Considering the current pandemic, there is a potential for shortage of N95 facepiece filtering respirator (FFR) for healthcare workers. • No studies in humans were found comparing effectiveness of N95 post-decontamination. • Laboratory based studies done on influenza virus (A/H5N1, H1N1) have shown that ultraviolet germicidal irradiation, microwave generated steam, or warm moist heat was able to reduce the viral load by as much as 4 log and at the same time maintain respirator performance by keeping the percent penetration below 5% and the pressure drop within standards. • While UVGI was able to maintain integrity of FFRs up to 3 cycles, microwave generated steam may melt the metallic components of certain N95 masks. • Hydrogen peroxide vapor (HPV) had minimal effect on respirator performance and structural integrity up to 20 cycles and was also effective in eradicating G. stearothermophilus and aerosolized bacteriophages. • Bleach, ethanol and isopropanol all affected the mean penetration of the mask beyond the 5% limit. • The Centers for Disease Control (CDC) does not recommend decontamination then reuse of FFRs as standard care but decontamination with UVGI, HPV or moist heat may be considered as an option in FFR shortages.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Avilash K. Cramer ◽  
Deborah Plana ◽  
Helen Yang ◽  
Mary M. Carmack ◽  
Enze Tian ◽  
...  

AbstractThe COVID-19 pandemic has led to widespread shortages of personal protective equipment (PPE) for healthcare workers, including of N95 masks (filtering facepiece respirators; FFRs). These masks are intended for single use but their sterilization and subsequent reuse has the potential to substantially mitigate shortages. Here we investigate PPE sterilization using ionized hydrogen peroxide (iHP), generated by SteraMist equipment (TOMI; Frederick, MD), in a sealed environment chamber. The efficacy of sterilization by iHP was assessed using bacterial spores in biological indicator assemblies. After one or more iHP treatments, five models of N95 masks from three manufacturers were assessed for retention of function based on their ability to form an airtight seal (measured using a quantitative fit test) and filter aerosolized particles. Filtration testing was performed at a university lab and at a National Institute for Occupational Safety and Health (NIOSH) pre-certification laboratory. The data demonstrate that N95 masks sterilized using SteraMist iHP technology retain filtration efficiency up to ten cycles, the maximum number tested to date. A typical iHP environment chamber with a volume of ~ 80 m3 can treat ~ 7000 masks and other items (e.g. other PPE, iPADs), making this an effective approach for a busy medical center.


2021 ◽  
pp. 70-75
Author(s):  
Viktor Yurievich Kozlov ◽  
Larisa Arkadyevna Karaseva

A safe hospital environment should fully provide the patient and healthcare professional with the comfort and safety conditions that effectively address vital health needs. To this end, medical devices are manufactured for the healthcare industry to ensure the safety of the hospital environment for patients and medical workers [2, 3].


2020 ◽  
Vol 8 (34) ◽  
pp. 27-39
Author(s):  
Abdurrahman Kharbat ◽  
Adin Mizer ◽  
Mimi Zumwalt

The COVID-19 pandemic has affected citizens and healthcare workers worldwide due to a number of important factors. The transmission of the SARS CoV-2 microorganism, the pathogen that causes COVID-19 infection, occurs through droplet and aerosol spread due to coughs and sneezes from infected patients. A panicked public began hoarding medical supplies and personal protective equipment (PPE), leaving healthcare workers to care for patients without adequate protection. A literature review was conducted to better understand the options available to hospital and healthcare system administrators as they develop necessary protocols for the conservation and possible reuse of PPE. This review is based upon the peer-reviewed studies of various scientific investigators, biotechnology researchers, governmental agency health officials, including meta-analyses, preliminary/pilot studies, and policy statements. Current findings indicate that extended usage of N95 respirators is practical since there are methods available for the decontamination/repeated use of N95 respirators. In evaluating the efficacy of such methods, the safety of healthcare workers is important in deciding which method to recommend. Available evidence supports the use of the Bioquell Hydrogen Peroxide Vapor (HPV) system for decontaminating N95 respirators. Information on other PPE will also be discussed about more specific items. Informed decisions regarding the policies of hospitals and healthcare systems must be considered, and with the safety of healthcare workers in mind, both factors influenced the recommendations made in this comprehensive review.


1999 ◽  
Vol 37 (9) ◽  
pp. 2781-2788 ◽  
Author(s):  
Tomasz A. Łe˛ski ◽  
Marek Gniadkowski ◽  
Anna Skoczyńska ◽  
Elz˙bieta Stefaniuk ◽  
Krzysztof Trzciński ◽  
...  

An outbreak of mupirocin-resistant (MuR) staphylococci was investigated in two wards of a large hospital in Warsaw, Poland. Fifty-three MuR isolates of Staphylococcus aureus, S. epidermidis, S. haemolyticus, S. xylosus, and S. capitis were identified over a 17-month survey which was carried out after introduction of the drug for the treatment of skin infections. The isolates were collected from patients with infections, environmental samples, and carriers; they constituted 19.5% of all staphylococcal isolates identified in the two wards during that time. Almost all the MuR isolates were also resistant to methicillin (methicillin-resistant S. aureus and methicillin-resistant coagulase-negative staphylococci). Seven of the outbreak isolates expressed a low-level-resistance phenotype (MuL), whereas the remaining majority of isolates were found to be highly resistant to mupirocin (MuH). The mupA gene, responsible for the MuH phenotype, has been assigned to three different polymorphic loci among the strains in the collection analyzed. The predominant polymorph, polymorph I (characterized by a mupA-containingEcoRI DNA fragment of about 16 kb), was located on a specific plasmid which was widely distributed among the entire staphylococcal population. All MuR S. aureus isolates were found to represent a single epidemic strain, which was clonally disseminated in both wards. The S. epidermidis population was much more diverse; however, at least four clusters of closely related isolates were identified, which suggested that some strains of this species were also clonally spread in the hospital environment. Six isolates of S. epidermidis were demonstrated to express the MuL and MuH resistance mechanisms simultaneously, and this is the first identification of such dual MuR phenotype-bearing strains. The outbreak was attributed to a high level and inappropriate use of mupirocin, and as a result the dermatological formulation of the drug has been removed from the hospital formulary.


Sign in / Sign up

Export Citation Format

Share Document