scholarly journals The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion through Potently Downregulating MHC-I

Author(s):  
Yiwen Zhang ◽  
Junsong Zhang ◽  
Yingshi Chen ◽  
Baohong Luo ◽  
Yaochang Yuan ◽  
...  

SummarySARS-CoV-2 infection have caused global pandemic and claimed over 5,000,000 tolls1–4. Although the genetic sequences of their etiologic viruses are of high homology, the clinical and pathological characteristics of COVID-19 significantly differ from SARS5,6. Especially, it seems that SARS-CoV-2 undergoes vast replication in vivo without being effectively monitored by anti-viral immunity7. Here, we show that the viral protein encoded from open reading frame 8 (ORF8) of SARS-CoV-2, which shares the least homology with SARS-CoV among all the viral proteins, can directly interact with MHC-I molecules and significantly down-regulates their surface expression on various cell types. In contrast, ORF8a and ORF8b of SARS-CoV do not exert this function. In the ORF8-expressing cells, MHC-I molecules are selectively target for lysosomal degradation by an autophagy-dependent mechanism. As a result, CTLs inefficiently eliminate the ORF8-expressing cells. Our results demonstrate that ORF8 protein disrupts antigen presentation and reduces the recognition and the elimination of virus-infected cells by CTLs8. Therefore, we suggest that the inhibition of ORF8 function could be a strategy to improve the special immune surveillance and accelerate the eradication of SARS-CoV-2 in vivo.

2021 ◽  
Vol 118 (23) ◽  
pp. e2024202118
Author(s):  
Yiwen Zhang ◽  
Yingshi Chen ◽  
Yuzhuang Li ◽  
Feng Huang ◽  
Baohong Luo ◽  
...  

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic and has claimed over 2 million lives worldwide. Although the genetic sequences of SARS-CoV and SARS-CoV-2 have high homology, the clinical and pathological characteristics of COVID-19 differ significantly from those of SARS. How and whether SARS-CoV-2 evades (cellular) immune surveillance requires further elucidation. In this study, we show that SARS-CoV-2 infection leads to major histocompability complex class Ι (MHC-Ι) down-regulation both in vitro and in vivo. The viral protein encoded by open reading frame 8 (ORF8) of SARS-CoV-2, which shares the least homology with SARS-CoV among all viral proteins, directly interacts with MHC-Ι molecules and mediates their down-regulation. In ORF8-expressing cells, MHC-Ι molecules are selectively targeted for lysosomal degradation via autophagy. Thus, SARS-CoV-2–infected cells are much less sensitive to lysis by cytotoxic T lymphocytes. Because ORF8 protein impairs the antigen presentation system, inhibition of ORF8 could be a strategy to improve immune surveillance.


2007 ◽  
Vol 81 (17) ◽  
pp. 9034-9049 ◽  
Author(s):  
Amie J. Eisfeld ◽  
Michael B. Yee ◽  
Angela Erazo ◽  
Allison Abendroth ◽  
Paul R. Kinchington

ABSTRACT We show here that the varicella-zoster virus (VZV) open reading frame 66 (ORF66) protein kinase is one mechanism employed to reduce class I major histocompatibility complex (MHC-I) surface expression in VZV-infected cells. Cells expressing enhanced green fluorescent protein-tagged functional and inactivated ORF66 (GFP-66 and GFP-66kd) from replication-defective adenovirus vectors revealed that ORF66 reduced MHC-I surface levels in a manner dependent on kinase activity. Cells infected with recombinant VZV expressing GFP-66 exhibited a significantly greater reduction in MHC-I surface expression than that observed in cells infected with VZV disrupted in GFP-66 expression. MHC-I maturation was delayed in its transport from the endoplasmic reticulum through the Golgi in both adenovirus-transduced cells expressing only GFP-66 and in VZV-infected cells expressing high levels of GFP-66, and this was predominantly kinase dependent. MHC-I levels were reduced in VZV-infected cells, and analyses of intracellular MHC-I revealed accumulation of folded MHC-I in the Golgi region, irrespective of ORF66 expression. Thus, the ORF66 kinase is important for VZV-mediated MHC-I downregulation, but additional mechanisms also may be involved. Analyses of the VZV ORF9a protein, the ortholog of the bovine herpesvirus 1 transporter associated with antigen processing inhibitor UL49.5 revealed no effects on MHC-I. These results establish a new role for viral protein kinases in immune evasion and suggest that VZV utilizes unique mechanisms to inhibit antigen presentation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Shaun Steele ◽  
Lauren Radlinski ◽  
Sharon Taft-Benz ◽  
Jason Brunton ◽  
Thomas H Kawula

Macrophages are myeloid-derived phagocytic cells and one of the first immune cell types to respond to microbial infections. However, a number of bacterial pathogens are resistant to the antimicrobial activities of macrophages and can grow within these cells. Macrophages have other immune surveillance roles including the acquisition of cytosolic components from multiple types of cells. We hypothesized that intracellular pathogens that can replicate within macrophages could also exploit cytosolic transfer to facilitate bacterial spread. We found that viable Francisella tularensis, as well as Salmonella enterica bacteria transferred from infected cells to uninfected macrophages along with other cytosolic material through a transient, contact dependent mechanism. Bacterial transfer occurred when the host cells exchanged plasma membrane proteins and cytosol via a trogocytosis related process leaving both donor and recipient cells intact and viable. Trogocytosis was strongly associated with infection in mice, suggesting that direct bacterial transfer occurs by this process in vivo.


2003 ◽  
Vol 71 (11) ◽  
pp. 6213-6221 ◽  
Author(s):  
Steve D. Swain ◽  
Sena J. Lee ◽  
Michel C. Nussenzweig ◽  
Allen G. Harmsen

ABSTRACT Host defense against the opportunistic pathogen Pneumocystis carinii requires functional interactions of many cell types. Alveolar macrophages are presumed to be a vital host cell in the clearance of P. carinii, and the mechanisms of this interaction have come under scrutiny. The macrophage mannose receptor is believed to play an important role as a receptor involved in the binding and phagocytosis of P. carinii. Although there is in vitro evidence for this interaction, the in vivo role of this receptor in P. carinii clearance in unclear. Using a mouse model in which the mannose receptor has been deleted, we found that the absence of this receptor is not sufficient to allow infection by P. carinii in otherwise immunocompetent mice. Furthermore, when mice were rendered susceptible to P. carinii by CD4+ depletion, mannose receptor knockout mice (MR-KO) had pathogen loads equal to those of wild-type mice. However, the MR-KO mice exhibited a greater influx of phagocytes into the alveoli during infection. This was accompanied by increased pulmonary pathology in the MR-KO mice, as well as greater accumulation of glycoproteins in the alveoli (glycoproteins, including harmful hydrolytic enzymes, are normally cleared by the mannose receptor). We also found that the surface expression of the mannose receptor is not downregulated during P. carinii infection in wild-type mice. Our findings suggest that while the macrophage mannose receptor may be important in the recognition of P. carinii, in vivo, this mechanism may be redundant, and the absence of this receptor may be compensated for.


Microbiology ◽  
2000 ◽  
Vol 81 (5) ◽  
pp. 1211-1216 ◽  
Author(s):  
Tetsuya Ikeda ◽  
Ryo Kobayashi ◽  
Manabu Horiuchi ◽  
Yoshifumi Nagata ◽  
Makoto Hasegawa ◽  
...  

Epstein–Barr virus (EBV) persists for life in the infected host. Little is known about EBV reactivation and regulation of virus persistence in healthy individuals. We examined tonsils of chronic tonsillitis patients to detect EBV transcripts, EBV genomes and lytic proteins. LMP1 transcripts were observed in 11 of 15 specimens and BZLF1 transcripts were detected in six. Multiple copies of EBV genome equivalents per cell, and ZEBRA- and viral capsid antigen-positive cells were also detected in tonsillar lymphocytes. These results indicate that EBV productively infected cells may survive in the face of immune surveillance in the tonsils. Thus, EBV replication may occur in tonsillar lymphocytes, and tonsillar lymphoid tissues may play a role in the maintenance of EBV load in vivo.


2010 ◽  
Vol 84 (21) ◽  
pp. 11245-11254 ◽  
Author(s):  
Brian C. DeHaven ◽  
Natasha M. Girgis ◽  
Yuhong Xiao ◽  
Paul N. Hudson ◽  
Victoria A. Olson ◽  
...  

ABSTRACT The vaccinia virus (VACV) complement control protein (VCP) is an immunomodulatory protein that is both secreted from and expressed on the surface of infected cells. Surface expression of VCP occurs though an interaction with the viral transmembrane protein A56 and is dependent on a free N-terminal cysteine of VCP. Although A56 and VCP have been shown to interact in infected cells, the mechanism remains unclear. To investigate if A56 is sufficient for surface expression, we transiently expressed VCP and A56 in eukaryotic cell lines and found that they interact on the cell surface in the absence of other viral proteins. Since A56 contains three extracellular cysteines, we hypothesized that one of the cysteines may be unpaired and could therefore form a disulfide bridge with VCP. To test this, we generated a series of A56 mutants in which each cysteine was mutated to a serine, and we found that mutation of cysteine 162 abrogated VCP cell surface expression. We also tested the ability of other poxvirus complement control proteins to bind to VACV A56. While the smallpox homolog of VCP is able to bind VACV A56, the ectromelia virus (ECTV) VCP homolog is only able to bind the ECTV homolog of A56, indicating that these proteins may have coevolved. Surface expression of poxvirus complement control proteins may have important implications in viral pathogenesis, as a virus that does not express cell surface VCP is attenuated in vivo. This suggests that surface expression of VCP may contribute to poxvirus pathogenesis.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1457-1457
Author(s):  
Melisa Soland ◽  
Evan J Colletti ◽  
Mariana Bego ◽  
Chad Sanada ◽  
Christopher D Porada ◽  
...  

Abstract Abstract 1457 Mesenchymal stem cells (MSC) are good candidates for cell therapies due to their immunomodulatory properties, ability to home to/engraft damaged tissues, and potential to differentiate into different cell types. However, when transplanted (Tx) in an allogeneic setting, MSC can elicit an immune response, activating the recipient's cytotoxic T lymphocytes (CTL) and Natural Killer (NK) cells, resulting in rejection of the Tx cells and reduced therapeutic efficacy. Human cytomegalovirus (HCMV, has developed several strategies to evade CTL and NK cell recognition. HCMV avoids CTL attack by producing proteins that downregulate MHC-I surface expression. These proteins are coded for by the unique short regions (US) 2, 3, 6 and 11 of HCMV's genome. We have previously shown that when MSC are transduced with retroviral vectors encoding each one of these US proteins, US6 and US11 were the most effective in reducing MSC's HLA-I surface expression and allogeneic CTL recognition and proliferation. However, HLA-I downregulation may render MSC transduced with US6 (MSC-US6) and US11 (MSC-US11) more susceptible to NK killing, undermining MSC's inherent ability to inhibit function of allogeneic NK cells. Here, we first investigated the role of US6 or US11 on MSC allorecognition by NK cells, and on MSC in vivo engraftment capability. NK killing assays demonstrated that US11 generated the most protective effect at the highest NK concentration (E:T ratio 20:1) (% specific lysis for MSC-US6: 60.4 ± 5.7 %; MSC-US11: 45.5 ± 2.4 % vs. MSC: 88.5 ± 3.4 % respectively). However, at an E:T ratio of 10:1 and 5:1 US11 produced the same degree of protection as US6 (E:T ratio of 10:1; % specific lysis for MSC-US6: 30.1 ± 5.6 %; MSC-US11: 26.3 ± 1.9 % vs. MSC: 54.7 ± 1.9 %); (E:T ratio 5:1; % specific lysis for MSC-US6: 11.9 ± 4.2; MSC-US11: 13.4 ± 2.3; vs. MSC: 25.5 ± 4 respectively). Only at an E:T ratio of 1:1 were US6 and US11 similar to untransduced MSCs (% specific lysis for MSC-US6: 4.7 ± 1.6; MSC-US11: 2.1 ± 0.5; vs. MSC: 4.9 ± 1.8; respectively) in terms of inhibition of NK killing. We also studied the role of US6 and 11 on the expression of beta-2-microglobulin (b2m) and other HLA-I molecules, and we found that US6 reduced b2m by 87± 2 % and HLA-G1 by 44±4.7 %, while US11 reduced b2m by 70± 0.6 % but increased HLA-G1 expression by 176.6±1.9 %. Therefore, the increase in HLA-G1 expression induced by US11 may explain the decrease in NK killing observed in the MSC-US11 cells. Furthermore, we investigated whether US6 or US11 could play a role in mediating complement resistance. While US6 increased the expression of CD59 in transduced cells (Mean fluorescence intensity (MFI) increased by 123.3±1), US11 increased the number of cells expressing CD59 by 121.4 ± 0.8 %, but did not modify their MFI. We next compared the in vivo engraftment potential of MSC, MSC-US6 and MSC-US11 by Tx 5.6×10^4 of each cell population into fetal sheep at 60 days of gestation (n=6). Since we have previously reported the ability of MSC to generate liver cells, we first investigated whether the expression of US6 and 11 would allow higher levels of liver engraftment and hepatocyte formation when compared to MSC (MSC-E) transduced with a retroviral vector encoding only NPT-II. Two months after Tx, liver tissues were collected and stained with NPT-II antibody. This revealed that US6 and US11 increased engraftment efficiency by 241% for MSC-US6 and 277% for MSC-US11 (MSC-E: 5.3 ± 0.4 %, MSC-US6: 12.8 ± 0.9 % and MSC-US:11 14.7 ± 0.8 %). Despite the higher level of liver engraftment seen with MSC-US6 and MSC-US11, co-expression of NPT-II and albumin (MSC-US6: 57% MSC-US1: 50% MSC-E: 75%) or NPT-II and Ov-6 was found at significantly lower levels in MSC-US11 and MSC-US6 Tx animals than in those Tx with MSC-E. Nevertheless, similar numbers of NPT-II/CD34 double-positive cells were found in the liver of MSC-US6 and MSC-US11 Tx animals when compared to MSC-E alone. In conclusion, engineering MSC to over-express US6 or US11 is an effective way to reduce CTL proliferation, NK killing and destruction of engrafted cells by the complement membrane attack complex. In agreement with the in vitro studies, transplantation of these cells into a large animal sheep model resulted in significantly higher levels of overall cell engraftment, but not differentiation towards a hepatocytic phenotype. Studies are underway to determine the mechanism by which HCMV proteins are interfering with MSC differentiation. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 78 (19) ◽  
pp. 10588-10597 ◽  
Author(s):  
Michael Schindler ◽  
Jan Münch ◽  
Matthias Brenner ◽  
Christiane Stahl-Hennig ◽  
Jacek Skowronski ◽  
...  

ABSTRACT A variety of simian immunodeficiency virus (SIVmac) nef mutants have been investigated to clarify which in vitro Nef functions contribute to efficient viral replication and pathogenicity in rhesus macaques. Most of these nef alleles, however, were only functionally characterized for their ability to down-modulate CD4 and class I major histocompatibility complex (MHC-I) cell surface expression and to enhance SIV replication and infectivity. To obtain information on the in vivo relevance of more recently established Nef functions, we examined the ability of a large panel of constructed SIVmac Nef mutants and of variants that emerged in infected macaques to down-regulate CD3, CD28, and MHC-II and to up-regulate the MHC-II-associated invariant chain (Ii). We found that all these four Nef functions were restored in SIV-infected macaques. In most cases, however, the initial mutations and the changes selected in vivo affected several in vitro Nef functions. For example, truncated Nef proteins that emerged in animals infected with SIVmac239 containing a 152-bp deletion in nef efficiently modulated both CD3 and Ii surface expression. Overall, our results suggest that the effect of Nef on each of the six cellular receptors investigated contributes to viral fitness in the infected host but also indicate that modulation of CD3, MHC-I, MHC-II, or Ii surface expression alone is insufficient for SIV virulence.


1998 ◽  
Vol 188 (5) ◽  
pp. 855-866 ◽  
Author(s):  
Bahram Bodaghi ◽  
Thomas R. Jones ◽  
Donato Zipeto ◽  
Claudio Vita ◽  
Lei Sun ◽  
...  

Human cytomegalovirus (HCMV), a betaherpesvirus, has developed several ways to evade the immune system, notably downregulation of cell surface expression of major histocompatibility complex class I heavy chains. Here we report that HCMV has devised another means to compromise immune surveillance mechanisms. Extracellular accumulation of both constitutively produced monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor–superinduced RANTES (regulated on activation, normal T cell expressed and secreted) was downregulated in HCMV-infected fibroblasts in the absence of transcriptional repression or the expression of polyadenylated RNA for the cellular chemokine receptors CCR-1, CCR-3, and CCR-5. Competitive binding experiments demonstrated that HCMV-infected cells bind RANTES, MCP-1, macrophage inflammatory protein (MIP)-1β, and MCP-3, but not MCP-2, to the same receptor as does MIP-1α, which is not expressed in uninfected cells. HCMV encodes three proteins with homology to CC chemokine receptors: US27, US28, and UL33. Cells infected with HCMV mutants deleted of US28, or both US27 and US28 genes, failed to downregulate extracellular accumulation of either RANTES or MCP-1. In contrast, cells infected with a mutant deleted of US27 continues to bind and downregulate those chemokines. Depletion of chemokines from the culture medium was at least partially due to continuous internalization of extracellular chemokine, since exogenously added, biotinylated RANTES accumulated in HCMV-infected cells. Thus, HCMV can modify the chemokine environment of infected cells through intense sequestering of CC chemokines, mediated principally by expression of the US28-encoded chemokine receptor.


2006 ◽  
Vol 87 (8) ◽  
pp. 2171-2180 ◽  
Author(s):  
Christine A. King ◽  
Joan Baillie ◽  
John H. Sinclair

For some time there has been evidence suggesting an interaction between human cytomegalovirus (HCMV) and Human immunodeficiency virus (HIV) in the pathogenesis of AIDS. Here, the interaction of HCMV and HIV-1 was examined in monocyte/macrophage cells, two cell types known to be targets for both viruses in vivo. Infection experiments demonstrated that prior infection with HCMV impeded subsequent superinfection with HIV-1. In contrast, uninfected bystander cells within the population were still permissive for HIV-1 infection and were also found to express increased levels of Gag after HIV-1 superinfection. Analysis of CCR5, a co-receptor for HIV-1, on HCMV-infected and bystander cells showed a substantial loss of surface CCR5 expression on infected cells due to HCMV-induced reduction of total cellular CCR5. In contrast, uninfected bystander cells displayed increased surface CCR5 expression. Furthermore, the data suggested that soluble factor(s) secreted from HCMV-infected cells were responsible for the observed upregulation of CCR5 on uninfected bystander cells. Taken together, these results suggest that, whilst HCMV-infected monocytes/macrophages are refractory to infection with HIV-1, HCMV-uninfected bystander cells within a population are more susceptible to HIV-1 infection. On this basis, HCMV infection may contribute to the pathogenesis of HIV-1.


Sign in / Sign up

Export Citation Format

Share Document