scholarly journals Cell clusters adopt a collective amoeboid mode of migration in confined non-adhesive environments

2020 ◽  
Author(s):  
Diane-Laure Pagès ◽  
Emmanuel Dornier ◽  
Jean De Seze ◽  
Li Wang ◽  
Rui Luan ◽  
...  

AbstractCell migration is essential to most living organisms. Single cell migration involves two distinct mechanisms, either a focal adhesion- and traction-dependent mesenchymal motility or an adhesion-independent but contractility-driven propulsive amoeboid locomotion. Cohesive migration of a group of cells, also called collective cell migration, has been only described as an adhesion- and traction-dependent mode of locomotion where the driving forces are mostly exerted at the front by leader cells. Here, by studying primary cancer specimens and cell lines from colorectal cancer, we demonstrate the existence of a second mode of collective migration which does not require adhesion to the surroundings and relies on a polarised supracellular contractility. Cell clusters confined into non-adhesive microchannels migrate in a rounded morphology, independently of the formation of focal adhesions or protruding leader cells, and lacking internal flow of cells, ruling-out classical traction-driven collective migration. Like single cells migrating in an amoeboid fashion, the clusters display a supracellular actin cortex with myosin II enriched at the rear. Using pharmacological inhibitors and optogenetics, we show that this polarised actomyosin activity powers migration and propels the clusters. This new mode of migration, that we named collective amoeboid, could be enabled by intrinsic or extrinsic neoplasic features to enable the metastatic spread of cancers.One Sentence SummaryClusters organise as polarised and contractile super-cells to migrate without adhesion.

2013 ◽  
Vol 10 (88) ◽  
pp. 20130717 ◽  
Author(s):  
Ravi A. Desai ◽  
Smitha B. Gopal ◽  
Sophia Chen ◽  
Christopher S. Chen

Contact inhibition of locomotion (CIL) is the process whereby cells collide, cease migrating in the direction of the collision, and repolarize their migration machinery away from the collision. Quantitative analysis of CIL has remained elusive because cell-to-cell collisions are infrequent in traditional cell culture. Moreover, whereas CIL predicts mutual cell repulsion and ‘scattering’ of cells, the same cells in vivo are observed to undergo CIL at some developmental times and collective cell migration at others. It remains unclear whether CIL is simply absent during collective cell migration, or if the two processes coexist and are perhaps even related. Here, we used micropatterned stripes of extracellular matrix to restrict cell migration to linear paths such that cells polarized in one of two directions and collisions between cells occurred frequently and consistently, permitting quantitative and unbiased analysis of CIL. Observing repolarization events in different contexts, including head-to-head collision, head-to-tail collision, collision with an inert barrier, or no collision, and describing polarization as a two-state transition indicated that CIL occurs probabilistically, and most strongly upon head-to-head collisions. In addition to strong CIL, we also observed ‘trains’ of cells moving collectively with high persistence that appeared to emerge from single cells. To reconcile these seemingly conflicting observations of CIL and collective cell migration, we constructed an agent-based model to simulate our experiments. Our model quantitatively predicted the emergence of collective migration, and demonstrated the sensitivity of such emergence to the probability of CIL. Thus CIL and collective migration can coexist, and in fact a shift in CIL probabilities may underlie transitions between solitary cell migration and collective cell migration. Taken together, our data demonstrate the emergence of persistently polarized, collective cell movement arising from CIL between colliding cells.


Development ◽  
2021 ◽  
Vol 148 (7) ◽  
pp. dev191767
Author(s):  
Jessica Stock ◽  
Andrea Pauli

ABSTRACTSelf-organization is a key feature of many biological and developmental processes, including cell migration. Although cell migration has traditionally been viewed as a biological response to extrinsic signals, advances within the past two decades have highlighted the importance of intrinsic self-organizing properties to direct cell migration on multiple scales. In this Review, we will explore self-organizing mechanisms that lay the foundation for both single and collective cell migration. Based on in vitro and in vivo examples, we will discuss theoretical concepts that underlie the persistent migration of single cells in the absence of directional guidance cues, and the formation of an autonomous cell collective that drives coordinated migration. Finally, we highlight the general implications of self-organizing principles guiding cell migration for biological and medical research.


Author(s):  
Willow Hight-Warburton ◽  
Robert Felix ◽  
Andrew Burton ◽  
Hannah Maple ◽  
Magda S. Chegkazi ◽  
...  

Adhesion of basal keratinocytes to the underlying extracellular matrix (ECM) plays a key role in the control of skin homeostasis and response to injury. Integrin receptors indirectly link the ECM to the cell cytoskeleton through large protein complexes called focal adhesions (FA). FA also function as intracellular biochemical signaling platforms to enable cells to respond to changing extracellular cues. The α4β1 and α9β1 integrins are both expressed in basal keratinocytes, share some common ECM ligands, and have been shown to promote wound healing in vitro and in vivo. However, their roles in maintaining epidermal homeostasis and relative contributions to pathological processes in the skin remain unclear. We found that α4β1 and α9β1 occupied distinct regions in monolayers of a basal keratinocyte cell line (NEB-1). During collective cell migration (CCM), α4 and α9 integrins co-localized along the leading edge. Pharmacological inhibition of α4β1 and α9β1 integrins increased keratinocyte proliferation and induced a dramatic change in cytoskeletal remodeling and FA rearrangement, detrimentally affecting CCM. Further analysis revealed that α4β1/α9β1 integrins suppress extracellular signal-regulated kinase (ERK1/2) activity to control migration through the regulation of downstream kinases including Mitogen and Stress Activated Kinase 1 (MSK1). This work demonstrates the roles of α4β1 and α9β1 in regulating migration in response to damage cues.


2016 ◽  
Vol 212 (2) ◽  
pp. 143-155 ◽  
Author(s):  
Elena Scarpa ◽  
Roberto Mayor

During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective.


Author(s):  
Kritika Saxena ◽  
Mohit Kumar Jolly ◽  
Kuppusamy Balamurugan

Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the ‘fittest’ for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.


2019 ◽  
Author(s):  
Margaret Johnson Kell ◽  
Su Fen Ang ◽  
Lucy Pigati ◽  
Abby Halpern ◽  
Heike Fölsch

ABSTRACTThe epithelial cell-specific clathrin adaptor AP-1B has a well-established role in polarized sorting of cargos to the basolateral membrane. Here we demonstrate a novel function for AP-1B during collective cell migration of epithelial sheets. We show that AP-1B colocalized with β1 integrin in focal adhesions during cell migration using confocal microscopy and total internal reflection fluorescence (TIRF) microscopy on fixed specimens. Further, AP-1B labeling in cell protrusion was distinct from labeling for the canonical endocytic adaptor complex AP-2. Using stochastic optical reconstruction microscopy (STORM) and live TIRF imaging we identified numerous AP-1B-coated structures at or close to the plasma membrane in cell protrusions. Importantly, immuno-electron microscopy (EM) showed AP-1B in clathrin-coated pits and budding vesicles at the plasma membrane during cell migration. Our data therefore established a novel function for AP-1B in endocytosis. We further show that β1 integrin was dependent on AP-1B and its co-adaptor, autosomal recessive hypercholesterolemia protein (ARH), for sorting to the basolateral membrane. Notably, we found that expression of AP-1B (and ARH) slowed epithelial-cell migration, and qRT-PCR analysis of human epithelial-derived cell lines revealed a loss of AP-1B expression in highly metastatic cancer cells indicating that AP-1B-facilitated endocytosis during cell migration might be an anti-cancer mechanism.


2021 ◽  
Vol 8 (5) ◽  
pp. 65
Author(s):  
Song-Yi Park ◽  
Hwanseok Jang ◽  
Seon-Young Kim ◽  
Dasarang Kim ◽  
Yongdoo Park ◽  
...  

Collective cell migration of epithelial tumor cells is one of the important factors for elucidating cancer metastasis and developing novel drugs for cancer treatment. Especially, new roles of E-cadherin in cancer migration and metastasis, beyond the epithelial–mesenchymal transition, have recently been unveiled. Here, we quantitatively examined cell motility using micropatterned free edge migration model with E-cadherin re-expressing EC96 cells derived from adenocarcinoma gastric (AGS) cell line. EC96 cells showed increased migration features such as the expansion of cell islands and straightforward movement compared to AGS cells. The function of tight junction proteins known to E-cadherin expression were evaluated for cell migration by knockdown using sh-RNA. Cell migration and straight movement of EC96 cells were reduced by knockdown of ZO-1 and claudin-7, to a lesser degree. Analysis of the migratory activity of boundary cells and inner cells shows that EC96 cell migration was primarily conducted by boundary cells, similar to leader cells in collective migration. Immunofluorescence analysis showed that tight junctions (TJs) of EC96 cells might play important roles in intracellular communication among boundary cells. ZO-1 is localized to the base of protruding lamellipodia and cell contact sites at the rear of cells, indicating that ZO-1 might be important for the interaction between traction and tensile forces. Overall, dynamic regulation of E-cadherin expression and localization by interaction with ZO-1 protein is one of the targets for elucidating the mechanism of collective migration of cancer metastasis.


2019 ◽  
Author(s):  
Florian Thüroff ◽  
Andriy Goychuk ◽  
Matthias Reiter ◽  
Erwin Frey

AbstractA wealth of experimental data relating to the emergence of collective cell migration as one proceeds from the behavioral dynamics of small cohorts of cells to the coordinated migratory response of cells in extended tissues is now available. Integrating these findings into a mechanistic picture of cell migration that is applicable across such a broad range of system sizes constitutes a crucial step towards a better understanding of the basic factors that determine the emergence of collective cell motion. Here we present a cellular-automaton-based modeling framework, which focuses on the integration of high-level cell functions and their concerted effect on cellular migration patterns. In particular, we adopt a top-down approach to incorporate a coarse-grained description of cell polarity and its response to mechanical cues, and address the impact of cell adhesion on collective migration in cell groups. We demonstrate that the model faithfully reproduces typical cell shapes and movements down to the level of single cells, yet is computationally efficient enough to allow for the simulation of (currently) up to 𝒪(104) cells. To develop a mechanistic picture that illuminates the relationship between cell functions and collective migration, we present a detailed study of small groups of cells in confined circular geometries, and discuss the emerging patterns of collective motion in terms of specific cellular properties. Finally, we apply our computational model at the level of extended tissues, and investigate stress and velocity distributions, as well as front morphologies, in expanding cellular sheets.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Yujun Chen ◽  
Nirupama Kotian ◽  
George Aranjuez ◽  
Lin Chen ◽  
C Luke Messer ◽  
...  

Collective cell migration is central to many developmental and pathological processes. However, the mechanisms that keep cell collectives together and coordinate movement of multiple cells are poorly understood. Using the Drosophila border cell migration model, we find that Protein phosphatase 1 (Pp1) activity controls collective cell cohesion and migration. Inhibition of Pp1 causes border cells to round up, dissociate, and move as single cells with altered motility. We present evidence that Pp1 promotes proper levels of cadherin-catenin complex proteins at cell-cell junctions within the cluster to keep border cells together. Pp1 further restricts actomyosin contractility to the cluster periphery rather than at individual internal border cell contacts. We show that the myosin phosphatase Pp1 complex, which inhibits non-muscle myosin-II (Myo-II) activity, coordinates border cell shape and cluster cohesion. Given the high conservation of Pp1 complexes, this study identifies Pp1 as a major regulator of collective versus single cell migration.


2018 ◽  
Author(s):  
Arnab Barua ◽  
Josue M. Nava-Sedeño ◽  
Haralampos Hatzikirou

AbstractCollective migration is commonly observed in groups of migrating cells, in the form of swarms or aggregates. Mechanistic models have proven very useful in understanding collective cell migration. Such models, either explicitly consider the forces involved in the interaction and movement of individuals or phenomenologically define rules which mimic the observed behavior of cells. However, mechanisms leading to collective migration are varied and specific to the type of cells involved. Additionally, the precise and complete dynamics of many important chemomechanical factors influencing cell movement, from signalling pathways to substrate sensing, are typically either too complex or largely unknown. The question is how to make quantitative/qualitative predictions of collective behavior without exact mechanistic knowledge. Here we propose the least microenvironmental uncertainty principle (LEUP) that serves as a generative model of collective migration without incorporation of full mechanistic details. Interestingly we show that the famous Vicsek model is a special case of LEUP. Finally, as a proof of concept, we apply the LEUP to quantitatively study ofthe collective behavior of spherical Serratia marcescens bacteria, where the underlying migration mechanisms remain elusive.


Sign in / Sign up

Export Citation Format

Share Document