scholarly journals TSPAN1 promotes human pancreatic cancer cells proliferation by modulating CDK1 via Akt

2020 ◽  
Author(s):  
Xin Wang ◽  
Xiaozhuo Gao ◽  
Jiaxun Tian ◽  
Rui Zhang ◽  
Yun Qiao ◽  
...  

AbstractBackgroundTo explore the potential therapeutic target to treat pancreatic cancers, Tspan1 was detected in human pancreatic cancer tissue and human pancreatic ductal adenocarcinoma cells and functional role of Tspan1 on proliferation was explored and the mechanism was investigated.Materials and MethodsTspan1 in PCC tissue and PDAC cell lines was measured by qRT-PCR and Western blot. Tspan1 was knock-downed and over-expressed in cells via transfection with Tspan1-siRNA and pLNCX-TSPAN1-cDNA, cell survival, proliferation and cell cycle were measured with MTT, Alamar blue and Flow Cytometry assay. The mRNA and protein expression were assessed by qRT-PCR and Western blotting. The expression of PI3K, Akt and p-Akt were detected, and CDK1 siRNA and specific inhibitor of Akt were used to explore the mechanism of TSPAN1 promoting PDAC cells proliferation.ResultsTspan1 expression in PCC tissue and PDAC cells was increased. Transfection of siRNA targeting Tspan1 in BxPC3 and PNAC-1 cells obviously decreased cell proliferation and down-regulated CDK1 expression. Consistently, both cell proliferation and CDK1 expression in BxPC3 and PNAC-1 cells were up-regulated with pLNCX-TSPAN1-cDNA transfection. Cell cycle analysis showed that after knockdown of Tspan1 the G2/M phase ratio was increased to cause mitosis arrest, and TSPAN1 overexpression caused cell cycle transition from G2 to M phase to promote cell proliferation. And these were dependent on the modulation of CDK1 expression via Akt.ConclusionTspan1 up-regulates CDK1 expression via activating Akt to promote human PCC cell proliferation and silencing of Tspan1 may be a potential therapeutic target to treat pancreatic cancers.

2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Xiao-ren Zhu ◽  
Shi-qing Peng ◽  
Le Wang ◽  
Xiao-yu Chen ◽  
Chun-xia Feng ◽  
...  

AbstractPancreatic cancer is the third leading cause of cancer-related mortalities and is characterized by rapid disease progression. Identification of novel therapeutic targets for this devastating disease is important. Phosphoenolpyruvate carboxykinase 1 (PCK1) is the rate-limiting enzyme of gluconeogenesis. The current study tested the expression and potential functions of PCK1 in pancreatic cancer. We show that PCK1 mRNA and protein levels are significantly elevated in human pancreatic cancer tissues and cells. In established and primary pancreatic cancer cells, PCK1 silencing (by shRNA) or CRISPR/Cas9-induced PCK1 knockout potently inhibited cell growth, proliferation, migration and invasion, and induced robust apoptosis activation. Conversely, ectopic overexpression of PCK1 in pancreatic cancer cells accelerated cell proliferation and migration. RNA-seq analyzing of differentially expressed genes (DEGs) in PCK1-silenced pancreatic cancer cells implied that DEGs were enriched in the PI3K-Akt-mTOR cascade. In pancreatic cancer cells, Akt-mTOR activation was largely inhibited by PCK1 shRNA, but was augmented after ectopic PCK1 overexpression. In vivo, the growth of PCK1 shRNA-bearing PANC-1 xenografts was largely inhibited in nude mice. Akt-mTOR activation was suppressed in PCK1 shRNA-expressing PANC-1 xenograft tissues. Collectively, PCK1 is a potential therapeutic target for pancreatic cancer.


Pharmacology ◽  
2019 ◽  
Vol 103 (5-6) ◽  
pp. 250-256 ◽  
Author(s):  
Eri Usugi ◽  
Kenichiro Ishii ◽  
Yoshifumi Hirokawa ◽  
Kazuki Kanayama ◽  
Chise Matsuda ◽  
...  

Background: Pirfenidone (PFD), which is an antifibrotic agent used for treatment of idiopathic pulmonary fibrosis, induces G0/G1 cell cycle arrest in fibroblasts. We hypothesized that PFD-induced G0/G1 cell cycle arrest might be achieved in other types of cells, including cancer cells. Here we investigated the effects of PFD on the proliferation of pancreatic cancer cells (PCCs) in vitro. Method: Human skin fibroblasts ASF-4-1 cells and human prostate stromal cells (PrSC) were used as fibroblasts. PANC-1, MIA PaCa-2, and BxPC-3 cells were used as human PCCs. Cell cycle and apoptosis were analyzed using flow cytometer. Results: First, we confirmed that PFD suppressed cell proliferation of ASF-4-1 cells and PrSC and induced G0/G1 cell cycle arrest. Under these experimental conditions, PFD also suppressed cell proliferation and induced G0/G1 cell cycle arrest in all PCCs. In PFD-treated PCCs, expression of p21 was increased but that of CDK2 was not clearly decreased. Of note, PFD did not induce significant apoptosis among PCCs. Conclusions: These results demonstrated that the antifibrotic agent PFD might have antiproliferative effects on PCCs by inducing G0/G1 cell cycle arrest. This suggests that PFD may target not only fibroblasts but also PCCs in the tumor microenvironment of pancreatic cancer.


2019 ◽  
Vol 19 (5) ◽  
pp. 417-427 ◽  
Author(s):  
Xiang Chen ◽  
Jilai Tian ◽  
Gloria H. Su ◽  
Jiayuh Lin

Background:Elevated production of the pro-inflammatory cytokine interleukin-6 (IL-6) and dysfunction of IL-6 signaling promotes tumorigenesis and are associated with poor survival outcomes in multiple cancer types. Recent studies showed that the IL-6/GP130/STAT3 signaling pathway plays a pivotal role in pancreatic cancer development and maintenance.Objective:We aim to develop effective treatments through inhibition of IL-6/GP130 signaling in pancreatic cancer.Methods:The effects on cell viability and cell proliferation were measured by MTT and BrdU assays, respectively. The effects on glycolysis was determined by cell-based assays to measure lactate levels. Protein expression changes were evaluated by western blotting and immunoprecipitation. siRNA transfection was used to knock down estrogen receptor α gene expression. Colony forming ability was determined by colony forming cell assay.Results:We demonstrated that IL-6 can induce pancreatic cancer cell viability/proliferation and glycolysis. We also showed that a repurposing FDA-approved drug bazedoxifene could inhibit the IL-6/IL-6R/GP130 complexes. Bazedoxifene also inhibited JAK1 binding to IL-6/IL-6R/GP130 complexes and STAT3 phosphorylation. In addition, bazedoxifene impeded IL-6 mediated cell viability/ proliferation and glycolysis in pancreatic cancer cells. Consistently, other IL-6/GP130 inhibitors SC144 and evista showed similar inhibition of IL-6 stimulated cell viability, cell proliferation and glycolysis. Furthermore, all three IL-6/GP130 inhibitors reduced the colony forming ability in pancreatic cancer cells.Conclusion:Our findings demonstrated that IL-6 stimulates pancreatic cancer cell proliferation, survival and glycolysis, and supported persistent IL-6 signaling is a viable therapeutic target for pancreatic cancer using IL-6/GP130 inhibitors.


2020 ◽  
Author(s):  
Sunkai Ling ◽  
Yanru He ◽  
Xiaoxue Li ◽  
Mingyue Hu ◽  
Yu Ma ◽  
...  

Abstract Background: The present study aimed to investigate the mechanistic biological function of circRHOT1 in pancreatic cancer cells.Methods: The expression of circRHOT1 and miR-125a-3p in pancreatic cancer tissues and their paired adjacent normal tissues was quantified by qRT-PCR. By knocking down or overexpressing circRHOT1 and miR-125a-3p in pancreatic cancer cells, their functions and potential mechanisms were explored.Results: circRHOT1 was overexpressed in pancreatic cancer tissues and cell lines, and it was found to directly bind to miR-125a-3p, acting as an endogenous sponge to inhibit its activity. Knockdown of circRHOT1 expression significantly inhibited proliferation as well as invasion, and it promoted apoptosis of pancreatic cancer cells via the regulation of E2F3 through the targeting of miR-125a-3p.Conclusion: Taken together, our results demonstrated that circRHOT1 plays critical roles in regulating the biological functions of pancreatic cancer cells, suggesting that circRHOT1 may serve as a potential diagnostic marker and therapeutic target for patients with pancreatic cancer.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2328
Author(s):  
Ji Hye Jeong ◽  
Jae-Ha Ryu

Pancreatic cancer has a high mortality rate due to poor rates of early diagnosis. One tumor suppressor gene in particular, p53, is frequently mutated in pancreatic cancer, and mutations in p53 can inactivate normal wild type p53 activity and increase expression of transcription factor forkhead box M1 (FoxM1). Overexpression of FoxM1 accelerates cellular proliferation and cancer progression. Therefore, inhibition of FoxM1 represents a therapeutic strategy for treating pancreatic cancer. Broussoflavonol B (BF-B), isolated from the stem bark of Broussonetia kazinoki Siebold has previously been shown to inhibit the growth of breast cancer cells. This study aimed to investigate whether BF-B exhibits anti-pancreatic cancer activity and if so, identify the underlying mechanism. BF-B reduced cell proliferation, induced cell cycle arrest, and inhibited cell migration and invasion of human pancreatic cancer PANC-1 cells (p53 mutated). Interestingly, BF-B down-regulated FoxM1 expression at both the mRNA and protein level. It also suppressed the expression of FoxM1 downstream target genes, such as cyclin D1, cyclin B1, and survivin. Cell cycle analysis showed that BF-B induced the arrest of G0/G1 phase. BF-B reduced the phosphorylation of extracellular signal-regulated kinase ½ (ERK½) and expression of ERK½ downstream effector c-Myc, which regulates cell proliferation. Furthermore, BF-B inhibited cell migration and invasion, which are downstream functional properties of FoxM1. These results suggested that BF-B could repress pancreatic cancer cell proliferation by inactivation of the ERK/c-Myc/FoxM1 signaling pathway. Broussoflavonol B from Broussonetia kazinoki Siebold may represent a novel chemo-therapeutic agent for pancreatic cancer.


Sign in / Sign up

Export Citation Format

Share Document