scholarly journals Blocking IL-6/GP130 Signaling Inhibits Cell Viability/Proliferation, Glycolysis, and Colony Forming Activity in Human Pancreatic Cancer Cells

2019 ◽  
Vol 19 (5) ◽  
pp. 417-427 ◽  
Author(s):  
Xiang Chen ◽  
Jilai Tian ◽  
Gloria H. Su ◽  
Jiayuh Lin

Background:Elevated production of the pro-inflammatory cytokine interleukin-6 (IL-6) and dysfunction of IL-6 signaling promotes tumorigenesis and are associated with poor survival outcomes in multiple cancer types. Recent studies showed that the IL-6/GP130/STAT3 signaling pathway plays a pivotal role in pancreatic cancer development and maintenance.Objective:We aim to develop effective treatments through inhibition of IL-6/GP130 signaling in pancreatic cancer.Methods:The effects on cell viability and cell proliferation were measured by MTT and BrdU assays, respectively. The effects on glycolysis was determined by cell-based assays to measure lactate levels. Protein expression changes were evaluated by western blotting and immunoprecipitation. siRNA transfection was used to knock down estrogen receptor α gene expression. Colony forming ability was determined by colony forming cell assay.Results:We demonstrated that IL-6 can induce pancreatic cancer cell viability/proliferation and glycolysis. We also showed that a repurposing FDA-approved drug bazedoxifene could inhibit the IL-6/IL-6R/GP130 complexes. Bazedoxifene also inhibited JAK1 binding to IL-6/IL-6R/GP130 complexes and STAT3 phosphorylation. In addition, bazedoxifene impeded IL-6 mediated cell viability/ proliferation and glycolysis in pancreatic cancer cells. Consistently, other IL-6/GP130 inhibitors SC144 and evista showed similar inhibition of IL-6 stimulated cell viability, cell proliferation and glycolysis. Furthermore, all three IL-6/GP130 inhibitors reduced the colony forming ability in pancreatic cancer cells.Conclusion:Our findings demonstrated that IL-6 stimulates pancreatic cancer cell proliferation, survival and glycolysis, and supported persistent IL-6 signaling is a viable therapeutic target for pancreatic cancer using IL-6/GP130 inhibitors.

1994 ◽  
Vol 266 (1) ◽  
pp. R277-R283 ◽  
Author(s):  
J. P. Smith ◽  
G. Liu ◽  
V. Soundararajan ◽  
P. J. McLaughlin ◽  
I. S. Zagon

The gastrointestinal peptide cholecystokinin (CCK) is known to stimulate growth of human pancreatic cancer in a receptor-mediated fashion. The purpose of this study was to characterize the receptor responsible for the trophic effects of CCK in cancer cells. With the use of homogenates of PANC-1 human pancreatic cancer cells grown in vitro, the binding characteristics and optimal conditions of radiolabeled selective CCK-receptor antagonists ([3H]L-365,260 and [3H]L-364,718) were examined. Specific and saturable binding was detected with [3H]L-365,260, and Scatchard analysis revealed that the data were consistent for a single site of binding with a binding affinity of 4.3 +/- 0.6 nM and a binding capacity (Bmax) of 283 +/- 68 fmol/mg protein in log phase cells. Binding was dependent on protein concentration, time, temperature, and pH and was sensitive to Na+, K+, Mg2+, and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. In contrast to log phase cells, Bmax decreased by 80 and 92% in confluent and postconfluent cultures, respectively. Subcellular fractionation studies revealed that binding was in the membrane fraction. Competition experiments indicated that L-365,260 and gastrin were more effective at displacing the radiolabeled L-365,260 than CCK. No binding was detected with the CCK-A antagonist [3H]L-364,718. Assays performed with [3H]L-365,260 on five additional human pancreatic cancer cell lines in vitro and tumor tissue from xenografts in nude mice also revealed specific and saturable binding. These results provide the first identification of a CCK-B/gastrin receptor in human pancreatic cancer cells and tumors and explain the effects of CCK on the growth of this malignancy.


Author(s):  
Zhou Jingyang ◽  
Che Jinhui ◽  
Xu Lu ◽  
Yang Weizhong ◽  
Li Yunjiu ◽  
...  

Backround: Pancreatic ductal adenocarcinoma (PDAC) is the most common and deadly cancer. Surgical resection is the only possible cure for pancreatic cancer but often has a poor prognosis, and the role of adjuvant therapy is urgently explored. Methods: MicroRNAs (miRNAs) play very important role in tumorigenesis by regulating the target genes. In this study, we identified miR-320b lower-expressed in human pancreatic cancer tissues but relatively higher-expressed in the adjacent nontumor tissues. Results: Consistently,the expression of miR-320b in different pancreatic cancer cell lines was significantly lower than the normal pancreatic cells. In order to identify the effects of miR-320b on cell growth, we overexpressed miR-320b in PANC-1 and FG pancreatic cancer cell lines, CCK8 and BrdU incorporation assay results showed that miR-320b inhibited cell proliferation. Discussion: We next predicted miR-20b targeted FOXM1(Forkhead box protein M1)and identified the negative relationship between miR-320b and FOXM1.We also demonstrated that elevated miR-320b expression inhibited tumor growth in vivo. Conclusion: All of these results showed that miR-320b suppressed pancreatic cancer cells proliferation by targeting FOXM1, which might provide a new diagnostic marker for pancreatic cancer.


2022 ◽  
Author(s):  
Guodong Chen ◽  
Chengming Ding ◽  
Weiping Tang ◽  
Shuo Qi ◽  
Pengyu Zhou ◽  
...  

Abstract Astragaloside IV (AS-IV) or 3-O-β-D-xylopyranosyl-6-O-β-D-glucopyranosylcyl-cloastragenol is a bioactive saponin extract from the root of Astragalus membranaceus. It has been proven to have an anti-tumor effect in a variety of tumors by inducing cell apoptosis and inhibiting cell proliferation. Its effects on pancreatic cancer have not been investigated. This study investigated the effects of AS-IV on proliferation, apoptosis and migration of pancreatic cancer cells in vitro and in vivo and explored its underlying mechanism. Pancreatic cancer cell lines SW1990 and Panc-1were treated with different doses of AS-IV. Plate clonality, CCK-8, EDU and flow cytometry were used to explore the effect of AS-IV on pancreatic cancer cell proliferation and cell cycle in vitro. Wound healing was used to investigate the effects of AS-IV on pancreatic cell migration. The protein expression levels of Bax/Bcl2, caspase3/7, cyclin D1, cyclin E and CDK4 were analyzed by western blotting. The results showed that AS-IV significantly inhibited tumor cell proliferation and cell cycle, induced apoptosis both in vitro and vivo on a dose-dependent basis and significantly inhibited the growth of pancreatic cell xenograft tumor in nude mice. Wound healing assays indicated that AS-IV also inhibited the migration of pancreatic cancer cells in a dose-dependent manner. This research confirmed that AS-IV inhibited pancreatic cancer cell proliferation by blocking the cell cycle and inducing apoptosis. It was hypothesized from this experiment that the potential mechanism of AS-IV inducing apoptosis of pancreatic cancer cells may be understood by activating the Bcl2/Bax/Caspase-3/Caspase-7 signaling pathway.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2538 ◽  
Author(s):  
Huynh Tuan ◽  
Bui Minh ◽  
Phuong Tran ◽  
Jeong Lee ◽  
Ha Oanh ◽  
...  

2′,4′-Dihydroxy-6’-methoxy-3′,5′-dimethylchalcone (DMC), a principal natural chalcone of Cleistocalyx operculatus buds, suppresses the growth of many types of cancer cells. However, the effects of this compound on pancreatic cancer cells have not been evaluated. In our experiments, we explored the effects of this chalcone on two human pancreatic cancer cell lines. A cell proliferation assay revealed that DMC exhibited concentration-dependent cytotoxicity against PANC-1 and MIA PACA2 cells, with IC50 values of 10.5 ± 0.8 and 12.2 ± 0.9 µM, respectively. Treatment of DMC led to the apoptosis of PANC-1 by caspase-3 activation as revealed by annexin-V/propidium iodide double-staining. Western blotting indicated that DMC induced proteolytic activation of caspase-3 and -9, degradation of caspase-3 substrate proteins (including poly[ADP-ribose] polymerase [PARP]), augmented bak protein level, while attenuating the expression of bcl-2 in PANC-1 cells. Taken together, our results provide experimental evidence to support that DMC may serve as a useful chemotherapeutic agent for control of human pancreatic cancer cells.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3848
Author(s):  
Dominik Żyro ◽  
Agnieszka Śliwińska ◽  
Izabela Szymczak-Pajor ◽  
Małgorzata Stręk ◽  
Justyn Ochocki

Antimicrobial properties of silver (I) ion and its complexes are well recognized. However, recent studies suggest that both silver (I) ion and its complexes possess anticancer activity associated with oxidative stress-induced apoptosis of various cancer cells. In this study, we aimed to investigate whether silver nitrate and its complexes with metronidazole and 4-hydroxymethylpyridine exert anticancer action against human pancreatic cancer cell lines (PANC-1 and 1.2B4). In the study, we compared decomposition speed for silver complexes under the influence of daylight and UV-A (ultraviolet-A) rays. We employed the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazonium bromide) assay to evaluate the cytotoxicity and the alkaline comet assay to determine genotoxicity of silver nitrate and its complexes. Flow cytometry and the Annexin V-FITC/PI apoptosis detection kit were used to detect the apoptosis of human pancreatic cancer cells. We found a dose dependent decrease of both pancreatic cancer cell line viability after exposure to silver nitrate and its complexes. The flow cytometry analysis confirmed that cell death occurred mainly via apoptosis. We also documented that the studied compounds induced DNA damage. Metronidazole and 4-hydroxymethylpyridine alone did not significantly affect viability and level of DNA damage of pancreatic cancer cell lines. Complex compounds showed better stability than AgNO3, which decomposed slower than when exposed to light. UV-A significantly influences the speed of silver salt decomposition reaction. To conclude, obtained data demonstrated that silver nitrate and its complexes exerted anticancer action against human pancreatic cancer cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ran Xue ◽  
Qinghua Meng ◽  
Di Lu ◽  
Xinjuan Liu ◽  
Yanbin Wang ◽  
...  

Aim. Pancreatic cancer is one of the most quickly fatal cancers around the world. Burgeoning researches have begun to prove that mitochondria play a crucial role in cancer treatment. Mitofusin2 (Mfn2) plays an indispensable role in mitochondrial fusion and adjusting function. However, the role and underlying mechanisms of Mfn2 on cell autophagy of pancreatic cancer is still unclear. Our aim was to explore the effect of Mfn2 on multiple biological functions involving cell autophagy in pancreatic cancer. Methods. Pancreatic cancer cell line, Aspc-1, was treated with Ad-Mfn2 overexpression. Western blotting, caspase-3 activity measurement, and CCK-8 and reactive oxygen species (ROS) assay were used to examine the effects of Mfn2 on pancreatic cancer autophagy, apoptosis, cell proliferation, oxidative stress, and PI3K/Akt/mTOR signaling. The expression of tissue Mfn2 was detected by immunohistochemical staining. Survival analysis of Mfn2 was evaluated by OncoLnc. Results. Mfn2 improved the expression of LC3-II and Bax and downregulated the expression of P62 and Bcl-2 in pancreatic cancer cells. Meanwhile, Mfn2 also significantly inhibited the expression of p-PI3K, p-Akt, and p-mTOR proteins in pancreatic cancer cells. In addition, Mfn2 inhibited pancreatic cancer cell proliferation and ROS production. Assessment of Kaplan-Meier curves showed that Mfn2− pancreatic cancer has a worse prognosis than Mfn2+ pancreatic cancer has. Conclusions. Our finding suggests that Mfn2 induces cell autophagy of pancreatic cancer through inhibiting the PI3K/Akt/mTOR signaling pathway. Meanwhile, Mfn2 also influences multiple biological functions of pancreatic cancer cells. Mfn2 may act as a therapeutic target in pancreatic cancer treatment.


2019 ◽  
Author(s):  
Xiangyi He ◽  
Yunwei Sun ◽  
Rong Fan ◽  
jing Sun ◽  
Douwu Zou ◽  
...  

Abstract Abstract AIMS: The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib, in combination with gemcitabine, has been shown to be a promising therapy in the treatment of pancreatic cancer. Our previous study showed that DJ-1 promotes invasion and metastasis of pancreatic cancer cells by activating SRC/ERK/uPA. The aim of this study was to evaluate whether silencing DJ-1 expression can sensitize pancreatic cancer cells to erlotinib treatment. METHODS: Knockdown of DJ-1 expression, combined with erlotinib treatment, was performed in the pancreatic cancer cell lines BxPC-3 and PANC-1. Cell proliferation was assessed with the CCK-8 assay and BrdU incorporation, while apoptosis was measured using terminal deoxynucleotidyl ransferase (TdT)-mediated dUTP nick-end labeling. RAS activity and activation of the downstream pathways involving AKT and ERK1/2 were explored to determine the underlying mechanism. RESULTS: Knockdown of DJ-1 expression accelerated erlotinib-induced cell apoptosis, and improved the inhibitory effect of erlotinib on pancreatic cancer cell proliferation in vitro and in xenograft tumor growth in vivo. Knockdown of DJ-1 decreased K-RAS expression, membrane translocation, and activity in BxPC-3 cells. Knockdown of DJ-1 also decreased K-RAS, H-RAS, and N-RAS expression in PANC-1 cells. Knockdown of DJ-1 synergistically inhibited AKT and ERK1/2 phosphorylation with erlotinib in pancreatic cancer cells. CONCLUSIONS: DJ-1 may activate the RAS pathway, reinforcing erlotinib drug resistance. Blocking DJ-1 in combination with the EGFR tyrosine kinase inhibitor erlotinib may be an attractive therapeutic target in pancreatic cancer.


2019 ◽  
Author(s):  
Xiangyi He ◽  
Yunwei Sun ◽  
Rong Fan ◽  
jing Sun ◽  
Douwu Zou ◽  
...  

Abstract Background: The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib, in combination with gemcitabine, has been shown to be a promising therapy in the treatment of pancreatic cancer. Our previous study showed that DJ-1 promotes invasion and metastasis of pancreatic cancer cells by activating SRC/ERK/uPA. The aim of this study was to evaluate whether silencing DJ-1 expression can sensitize pancreatic cancer cells to erlotinib treatment. METHODS: Knockdown of DJ-1 expression, combined with erlotinib treatment, was performed in the pancreatic cancer cell lines BxPC-3, PANC-1 and MiaPACa-2. Cell proliferation was assessed with the CCK-8 assay and BrdU incorporation, while apoptosis was measured using terminal deoxynucleotidyl ransferase (TdT)-mediated dUTP nick-end labeling. RAS activity and activation of the downstream pathways involving AKT and ERK1/2 were explored to determine the underlying mechanism. RESULTS: Knockdown of DJ-1 expression accelerated erlotinib-induced cell apoptosis, and improved the inhibitory effect of erlotinib on pancreatic cancer cell proliferation in vitro and in xenograft tumor growth in vivo . Knockdown of DJ-1 decreased K-RAS expression, membrane translocation, and activity in BxPC-3 cells. Knockdown of DJ-1 also decreased K-RAS, H-RAS, and N-RAS expression in PANC-1 and MiaPACa-2 cells. Knockdown of DJ-1 synergistically inhibited AKT and ERK1/2 phosphorylation with erlotinib in pancreatic cancer cells. CONCLUSIONS: DJ-1 may activate the RAS pathway, reinforcing erlotinib drug resistance. Blocking DJ-1 in combination with the EGFR tyrosine kinase inhibitor erlotinib may be an attractive therapeutic target in pancreatic cancer.


1991 ◽  
Vol 276 (3) ◽  
pp. 599-605 ◽  
Author(s):  
S Yonezawa ◽  
J C Byrd ◽  
R Dahiya ◽  
J J L Ho ◽  
J R Gum ◽  
...  

The purpose of this study was to determine the quantity and nature of the mucins synthesized and secreted by four different pancreatic cancer cell lines. Well- to moderately-differentiated SW1990 and CAPAN-2 human pancreatic cancer cells were found to produce more high-Mr glycoprotein (HMG) than less-differentiated MIA PaCa-2 and PANC-1 cells. Most of the labelled HMG was secreted within 24 h. The results of chemical and enzymic degradation, ion-exchange chromatography and density-gradient centrifugation indicated that the HMG in SW1990 and CAPAN-2 cells has the properties expected for mucins, whereas much of the HMG in MIA PaCa-2 and PANC-1 cells may not be mucin, but proteoglycan. These results are consistent with immunoblots and Northern blots showing the presence of apomucin and apomucin mRNA in SW1990 and CAPAN-2 cells, but not in MIA PaCa-2 and PANC-1 cells. The Western blots and Northern blots also show that SW1990 and CAPAN-2 cells, like breast cancer cells, have the mammary-type apomucin and mRNA coded by the MUC1 gene, but lack the intestinal type apomucin and mRNA coded by the MUC2 gene. In contrast, the colon cancer cell lines tested in culture express apomucin and mRNA coded by MUC2 but not by MUC1.


Sign in / Sign up

Export Citation Format

Share Document