scholarly journals Early Detection of Coronavirus Cases Using Chest X-ray Images Employing Machine Learning and Deep Learning Approaches

Author(s):  
Khair Ahammed ◽  
Md. Shahriare Satu ◽  
Mohammad Zoynul Abedin ◽  
Md. Auhidur Rahaman ◽  
Sheikh Mohammed Shariful Islam

AbstractThis study aims to investigate if applying machine learning and deep learning approaches on chest X-ray images can detect cases of coronavirus. The chest X-ray datasets were obtained from Kaggle and Github and pre-processed into a single dataset using random sampling. We applied several machine learning and deep learning methods including Convolutional Neural Networks (CNN) along with classical machine learners. In deep learning procedure, several pre-trained models were also employed transfer learning in this dataset. Our proposed CNN model showed the highest accuracy (94.03%), AUC (95.52%), f-measure (94.03%), sensitivity (94.03%) and specificity (97.01%) as well as the lowest fall out (4.48%) and miss rate (2.98%) respectively. We also evaluated specificity and fall out rate along with accuracy to identify non-COVID-19 individuals more accurately. As a result, our new models might help to early detect COVID-19 patients and prevent community transmission compared to traditional methods.

2021 ◽  
Vol 11 (10) ◽  
pp. 993
Author(s):  
Roberta Fusco ◽  
Roberta Grassi ◽  
Vincenza Granata ◽  
Sergio Venanzio Setola ◽  
Francesca Grassi ◽  
...  

Objective: To report an overview and update on Artificial Intelligence (AI) and COVID-19 using chest Computed Tomography (CT) scan and chest X-ray images (CXR). Machine Learning and Deep Learning Approaches for Diagnosis and Treatment were identified. Methods: Several electronic datasets were analyzed. The search covered the years from January 2019 to June 2021. The inclusion criteria were studied evaluating the use of AI methods in COVID-19 disease reporting performance results in terms of accuracy or precision or area under Receiver Operating Characteristic (ROC) curve (AUC). Results: Twenty-two studies met the inclusion criteria: 13 papers were based on AI in CXR and 10 based on AI in CT. The summarized mean value of the accuracy and precision of CXR in COVID-19 disease were 93.7% ± 10.0% of standard deviation (range 68.4–99.9%) and 95.7% ± 7.1% of standard deviation (range 83.0–100.0%), respectively. The summarized mean value of the accuracy and specificity of CT in COVID-19 disease were 89.1% ± 7.3% of standard deviation (range 78.0–99.9%) and 94.5 ± 6.4% of standard deviation (range 86.0–100.0%), respectively. No statistically significant difference in summarized accuracy mean value between CXR and CT was observed using the Chi square test (p value > 0.05). Conclusions: Summarized accuracy of the selected papers is high but there was an important variability; however, less in CT studies compared to CXR studies. Nonetheless, AI approaches could be used in the identification of disease clusters, monitoring of cases, prediction of the future outbreaks, mortality risk, COVID-19 diagnosis, and disease management.


2020 ◽  
Vol 25 (6) ◽  
pp. 553-565 ◽  
Author(s):  
Boran Sekeroglu ◽  
Ilker Ozsahin

The detection of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), which is responsible for coronavirus disease 2019 (COVID-19), using chest X-ray images has life-saving importance for both patients and doctors. In addition, in countries that are unable to purchase laboratory kits for testing, this becomes even more vital. In this study, we aimed to present the use of deep learning for the high-accuracy detection of COVID-19 using chest X-ray images. Publicly available X-ray images (1583 healthy, 4292 pneumonia, and 225 confirmed COVID-19) were used in the experiments, which involved the training of deep learning and machine learning classifiers. Thirty-eight experiments were performed using convolutional neural networks, 10 experiments were performed using five machine learning models, and 14 experiments were performed using the state-of-the-art pre-trained networks for transfer learning. Images and statistical data were considered separately in the experiments to evaluate the performances of models, and eightfold cross-validation was used. A mean sensitivity of 93.84%, mean specificity of 99.18%, mean accuracy of 98.50%, and mean receiver operating characteristics–area under the curve scores of 96.51% are achieved. A convolutional neural network without pre-processing and with minimized layers is capable of detecting COVID-19 in a limited number of, and in imbalanced, chest X-ray images.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Okeke Stephen ◽  
Mangal Sain ◽  
Uchenna Joseph Maduh ◽  
Do-Un Jeong

This study proposes a convolutional neural network model trained from scratch to classify and detect the presence of pneumonia from a collection of chest X-ray image samples. Unlike other methods that rely solely on transfer learning approaches or traditional handcrafted techniques to achieve a remarkable classification performance, we constructed a convolutional neural network model from scratch to extract features from a given chest X-ray image and classify it to determine if a person is infected with pneumonia. This model could help mitigate the reliability and interpretability challenges often faced when dealing with medical imagery. Unlike other deep learning classification tasks with sufficient image repository, it is difficult to obtain a large amount of pneumonia dataset for this classification task; therefore, we deployed several data augmentation algorithms to improve the validation and classification accuracy of the CNN model and achieved remarkable validation accuracy.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 20235-20254
Author(s):  
Hanan S. Alghamdi ◽  
Ghada Amoudi ◽  
Salma Elhag ◽  
Kawther Saeedi ◽  
Jomanah Nasser

Sci ◽  
2022 ◽  
Vol 4 (1) ◽  
pp. 3
Author(s):  
Steinar Valsson ◽  
Ognjen Arandjelović

With the increase in the availability of annotated X-ray image data, there has been an accompanying and consequent increase in research on machine-learning-based, and ion particular deep-learning-based, X-ray image analysis. A major problem with this body of work lies in how newly proposed algorithms are evaluated. Usually, comparative analysis is reduced to the presentation of a single metric, often the area under the receiver operating characteristic curve (AUROC), which does not provide much clinical value or insight and thus fails to communicate the applicability of proposed models. In the present paper, we address this limitation of previous work by presenting a thorough analysis of a state-of-the-art learning approach and hence illuminate various weaknesses of similar algorithms in the literature, which have not yet been fully acknowledged and appreciated. Our analysis was performed on the ChestX-ray14 dataset, which has 14 lung disease labels and metainfo such as patient age, gender, and the relative X-ray direction. We examined the diagnostic significance of different metrics used in the literature including those proposed by the International Medical Device Regulators Forum, and present the qualitative assessment of the spatial information learned by the model. We show that models that have very similar AUROCs can exhibit widely differing clinical applicability. As a result, our work demonstrates the importance of detailed reporting and analysis of the performance of machine-learning approaches in this field, which is crucial both for progress in the field and the adoption of such models in practice.


Author(s):  
Tanishka Dodiya

Abstract: COVID-19 also famously known as Coronavirus is one of the deadliest viruses found in the world, which has a high rate in both demise and spread. This has caused a severe pandemic in the world. The virus was first reported in Wuhan, China, registering causes like pneumonia. The first case was encountered on December 31, 2019. As of 20th October 2021, more than 242 million cases have been reported in more than 188 countries, and it has around 5 million deaths. COVID- 19 infected persons have pneumonia-like symptoms, and the infection damages the body's respiratory organs, making breathing difficult. The elemental clinical equipment as of now being employed for the analysis of COVID-19 is RT-PCR, which is costly, touchy, and requires specific clinical workforce. According to recent studies, chest X-ray scans include important information about the start of the infection, and this information may be examined so that diagnosis and treatment can begin sooner. This is where artificial intelligence meets the diagnostic capabilities of intimate clinicians. X-ray imaging is an effectively available apparatus that can be an astounding option in the COVID-19 diagnosis. The architecture usually used are VGG16, ResNet50, DenseNet121, Xception, ResNet18, etc. This deep learning based COVID detection system can be installed in hospitals for early diagnosis, or it can be used as a second opinion. Keywords: COVID-19, Deep Learning, CNN, CT-Image, Transfer Learning, VGG, ResNet, DenseNet


Author(s):  
Rishabh Raj

ommand, product recommendation and medical diagnosis. The detection of severe acute respiratory syndrome corona virus 2 (SARS CoV-2), which is responsible for corona virus disease 2019 (COVID-19), using chest X-ray images has life-saving importance for bothpatients and doctors. In addition, in countries that are unable to purchase laboratory kits for testing, this becomes even more vital. In this study, we aimed to present the use of deep learning for the high-accuracy detection of COVID-19 using chest X-ray images. Publicly available X-ray images were used in the experiments, which involved the training of deep learning and machine learning classifiers. Experiments were performed using convolutional neural networks and machine learning models. Images and statistical data were considered separately in the experiments to evaluate the performances of models, and eightfold cross-validation was used. A mean accuracy of 98.50%. A convolutional neural network without pre-processing and with minimized layers is capable of detecting COVID- 19 in a limited number of, and in imbalanced, chest X-rayimages.


Author(s):  
Shaymaa Taha Ahmed ◽  
Suhad Malallah Kadhem

<p class="0abstract"><strong>—</strong> Chest imaging diagnostics is crucial in the medical area due to many serious lung diseases like cancers and nodules and particularly with the current pandemic of Covid-19. Machine learning approaches yield prominent results toward the task of diagnosis. Recently, deep learning methods are utilized and recommended by many studies in this domain. The research aims to critically examine the newest lung disease detection procedures using deep learning algorithms that use X-ray and CT scan datasets. Here, the most recent studies in this area (2015-2021) have been reviewed and summarized to provide an overview of the most appropriate methods that should be used or developed in future works, what limitations should be considered, and at what level these techniques help physicians in identifying the disease with better accuracy. The lack of various standard datasets, the huge training set, the high dimensionality of data, and the independence of features have been the main limitations based on the literature. However, different architectures of deep learning are used by many researchers but, Convolutional Neural Networks (CNN) are still state-of-art techniques in dealing with image datasets.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Hossein Mohammad-Rahimi ◽  
Mohadeseh Nadimi ◽  
Azadeh Ghalyanchi-Langeroudi ◽  
Mohammad Taheri ◽  
Soudeh Ghafouri-Fard

Coronavirus disease, first detected in late 2019 (COVID-19), has spread fast throughout the world, leading to high mortality. This condition can be diagnosed using RT-PCR technique on nasopharyngeal and throat swabs with sensitivity values ranging from 30 to 70%. However, chest CT scans and X-ray images have been reported to have sensitivity values of 98 and 69%, respectively. The application of machine learning methods on CT and X-ray images has facilitated the accurate diagnosis of COVID-19. In this study, we reviewed studies which used machine and deep learning methods on chest X-ray images and CT scans for COVID-19 diagnosis and compared their performance. The accuracy of these methods ranged from 76% to more than 99%, indicating the applicability of machine and deep learning methods in the clinical diagnosis of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document