scholarly journals Copper deficiency alters shoot architecture and reduces fertility of both gynoecium and androecium in Arabidopsis thaliana

Author(s):  
Maryam Rahmati Ishka ◽  
Olena K. Vatamaniuk

AbstractCopper deficiency reduces plant growth, male fertility and seed set. The contribution of copper to female fertility and the underlying molecular aspects of copper deficiency-caused phenotypes are not well-known. We show that among copper deficiency-caused defects in Arabidopsis thaliana were the increased shoot branching, delayed flowering and senescence, and entirely abolished gynoecium fertility. The increased shoot branching of copper-deficient plants was rescued by the exogenous application of auxin or copper. The delayed flowering was associated with the decreased expression of the floral activator, FT. Copper deficiency also decreased the expression of senescence-associated genes, WRKY53 and SAG13, but increased the expression of SAG12. The reduced fertility of copper-deficient plants stemmed from multiple factors including the abnormal stigma papillae development, the abolished gynoecium fertility, and the failure of anthers to dehisce. The latter defect was associated with reduced lignification, the upregulation of copper microRNAs and the downregulation of their targets, laccases, implicated in lignin synthesis. Copper-deficient plants accumulated ROS in pollen and had reduced cytochrome c oxidase activity in leaves. This study opens new avenues for the investigation into the relationship between copper homeostasis, hormone-mediated shoot architecture, gynoecium fertility and copper deficiency-derived nutritional signals leading to the delay in flowering and senescence.HighlightCopper deficiency alters shoot architecture, delays flowering and senescence, and compromises fertility by altering stigma morphology, disrupting anther lignification and dehiscence, and pollen redox status in Arabidopsis thaliana.

Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 52
Author(s):  
Rajan Kapoor ◽  
Aniruddha Datta ◽  
Michael Thomson

Conventional breeding approaches that focus on yield under highly favorable nutrient conditions have resulted in reduced genetic and trait diversity in crops. Under the growing threat from climate change, the mining of novel genes in more resilient varieties can help dramatically improve trait improvement efforts. In this work, we propose the use of the joint graphical lasso for discovering genes responsible for desired phenotypic traits. We prove its efficiency by using gene expression data for wild type and delayed flowering mutants for the model plant. Arabidopsis thaliana shows that it recovers the mutation causing genes LNK1 and LNK2. Some novel interactions of these genes were also predicted. Observing the network level changes between two phenotypes can also help develop meaningful biological hypotheses regarding the novel functions of these genes. Now that this data analysis strategy has been validated in a model plant, it can be extended to crop plants to help identify the key genes for beneficial traits for crop improvement.


Author(s):  
Hui-Yu Chen ◽  
Shan-Hua Lin ◽  
Ling-Hsin Cheng ◽  
Jeng-Jong Wu ◽  
Yi-Chen Lin ◽  
...  

Abstract Compared with root development regulated by external nutrients, less is known about how internal nutrients are monitored to control plasticity of shoot development. In this study, we characterize an Arabidopsis thaliana transceptor, NRT1.13 (NPF4.4), of the NRT1/PTR/NPF family. Different from most NRT1 transporters, NRT1.13 does not have the conserved proline residue between transmembrane domains 10 and 11; an essential residue for nitrate transport activity in CHL1/NRT1.1/NPF6.3. As expected, when expressed in oocytes, NRT1.13 showed no nitrate transport activity. However, when Ser 487 at the corresponding position was converted back to proline, NRT1.13 S487P regained nitrate uptake activity, suggesting that wild-type NRT1.13 cannot transport nitrate but can bind it. Subcellular localization and β-glucuronidase reporter analyses indicated that NRT1.13 is a plasma membrane protein expressed at the parenchyma cells next to xylem in the petioles and the stem nodes. When plants were grown with a normal concentration of nitrate, nrt1.13 showed no severe growth phenotype. However, when grown under low-nitrate conditions, nrt1.13 showed delayed flowering, increased node number, retarded branch outgrowth, and reduced lateral nitrate allocation to nodes. Our results suggest that NRT1.13 is required for low-nitrate acclimation and that internal nitrate is monitored near the xylem by NRT1.13 to regulate shoot architecture and flowering time.


2015 ◽  
Vol 29 ◽  
pp. 296-297
Author(s):  
Geeta Prasad ◽  
Guillermina Mendiondo ◽  
Jorge V. Conde ◽  
Cristina Sousa Correia ◽  
M.J. Holdsworth

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3126
Author(s):  
Dominik Saul ◽  
Robyn Laura Kosinsky

The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.


1990 ◽  
Vol 30 (5) ◽  
pp. 687 ◽  
Author(s):  
RF Brennan

The effectiveness of copper oxychloride (CU2Cl(OH)3, 52% Cu) and chelated Cu (Cu-EDTA, 15% Cu) were compared with the effectiveness of copper sulphate (CuSO4, 25% Cu) as foliar sprays for alleviating Cu deficiency and obtaining maximum grain yields of wheat (1.93-2.5 t/ha). The experiments were conducted over 4 years at 4 sites in the Lake Grace and Newdegate districts, about 300-350 km south-east of Perth, Western Australia. Each source was sprayed at 6 or 7 rates of Cu to define the relationship between grain yield and the amount of foliar Cu applied for wheat grown on soils where Cu had not been previously applied. The levels of Cu sprayed in experiment 1 were 0, 21, 63, 125, 250, and 375 g/ha, and for experiments 2,3 and 4, the levels of Cu were 0, 25, 50, 100, 200, 400 and 800 g/ha. The relative effectiveness of foliar-applied chelated Cu and CU2Cl(OH)3, compared with CuSO4, was 1.72-2.24 and 0.47-0.63, respectively. Although the relative effectiveness of each product was different, similar quantities of each were required to achieve maximum wheat grain yield because of the difference in the Cu contents of each source of Cu. The amounts of Cu product sprayed for maximum grain yields of wheat varied within the ranges 0.9-1.8 kg/ha, 0.8-1.2 kg/ha and 0.8-1.8 kg/ha for CuSO4, chelated Cu and CU2Cl(OH)3, respectively.


2012 ◽  
Vol 41 (6) ◽  
pp. 2103-2108 ◽  
Author(s):  
FUMINORI HYODO ◽  
RYAN M. DAVIS ◽  
EMI HYODO ◽  
SHINGO MATSUMOTO ◽  
MURALI C. KRISHNA ◽  
...  

1984 ◽  
Vol 35 (3) ◽  
pp. 347 ◽  
Author(s):  
AD Robson ◽  
JF Loneragan ◽  
JW Gartrell ◽  
K Snowball

A glasshouse experiment was conducted to define critical concentrations of copper in young leaves of wheat and to investigate the effect of water stress after anthesis on the relationship between yield and copper concentrations in young leaves. The concentration of copper in the youngest fully emerged leaf was a sensitive and accurate indicator of the copper status of wheat. The critical concentration for copper in the youngest fully emerged leaf did not change with the age of the plant. Copper deficiency occurred whenever the concentration of copper in the youngest fully emerged leaf fell below 1.3 �g g-I (dry weight). Water stress after anthesis did not change the relationship between copper concentrations in young leaves and grain yield, although this stress markedly decreased grain yield. In the field there was considerable variability among plants given the same copper treatment in copper concentrations in young leaves. Nevertheless, whenever copper deficiency decreased growth, the average concentration of copper in the youngest fully emerged leaf was less than 1.3 �g g-1.


Sign in / Sign up

Export Citation Format

Share Document