scholarly journals Behavioral changes before lockdown, and decreased retail and recreation mobility during lockdown, contributed most to the successful control of the COVID-19 epidemic in 35 Western countries

Author(s):  
Koen Deforche ◽  
Jurgen Vercauteren ◽  
Viktor Müller ◽  
Anne-Mieke Vandamme

The COVID-19 pandemic has prompted a lockdown in many countries to control the exponential spread of the SARS-CoV-2 virus (1, 2). This resulted in curbing the epidemic by reducing the time-varying basic reproduction number (Rt) to below one (3, 4). Governments are looking for evidence to balance the demand of their citizens to ease some of the restriction, against the fear of a second peak in infections. More details on the specific circumstances that promote exponential spread (i.e. Rt> 1) and the measures that contributed most to a reduction in Rt are needed. Here we show that in 33 of 35 Western countries (32 European, plus Israel, USA and Canada), Rt fell to around or below one during lockdown (March – May 2020). One third of the effect happened already on average 6 days before the lockdown, with lockdown itself causing another major drop in transmission. Country-wide compulsory usage of masks was implemented only in Slovakia 10 days into lockdown, and on its own reduced transmission by half. During lockdown, decreased mobility in retail and recreation was an independent predictor of lower Rt during lockdown, while changes in other types of mobility were not. These results are consistent with anecdotal evidence that large recreational gatherings are super-spreading events (5, 6), and may even suggest that infections during day-to-day contact at work are not sufficient to spark exponential growth. Our data suggest measures that will contribute to avoiding a second peak include a tight control on circumstances that facilitate massive spread such as large gatherings especially indoors, physical distancing, and mask use.

2020 ◽  
Author(s):  
Koen Deforche ◽  
Jurgen Vercauteren ◽  
Viktor Müller ◽  
Anne-Mieke Vandamme

Abstract BackgroundThe COVID-19 pandemic has prompted a lockdown in many countries to control the exponential spread of the SARS-CoV-2 virus, hereby reducing the time-varying basic reproduction number ( R t ) to below one. Governments are looking for evidence to balance the demand of their citizens to ease some of the restriction, against the fear of a second peak in infections. More details on the specific circumstances that promote exponential spread (i.e. R t > 1) are needed.MethodsIncidence data of cases and deaths from the first wave of infections for 35 Western countries (32 European, plus Israel, USA and Canada) were analyzed using epidemiological compartment models in a Bayesian framework. Mobility data was used to estimate the timing of changes associated with a lockdown, and was correlated with estimated reductions of R t .ResultsAcross all countries, the initial median estimate for R t was 3.6 (95% IQR 2.4 – 5.2), and it was reduced to 0.78 (95% IQR 0.58 – 1.01) during lockdown. 48% (18% – 65%) of the reduction occurred already in the week before lockdown, with lockdown itself causing the remaining drop in transmission. A lower R t during lockdown was independently associated with an increased time spent at home (0.21 per 10% more time, p < 0.007), and decreased mobility related to retail and recreation (0.07 per 10% less mobility, p < 0.008).ConclusionsIn a Western population unaware of the risk, SARS-CoV-2 can be highly contagious with a reproduction number R 0 > 5. Our results are consistent with evidence that recreational activities (including restaurant and bar visits) enable super-spreading events. Exiting from lockdown therefore requires continued physical distancing and tight control on this kind of activities.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Koen Deforche ◽  
Jurgen Vercauteren ◽  
Viktor Müller ◽  
Anne-Mieke Vandamme

Abstract Background The COVID-19 pandemic has prompted a lockdown in many countries to control the exponential spread of the SARS-CoV-2 virus, hereby reducing the time-varying basic reproduction number (Rt) to below one. Governments are looking for evidence to balance the demand of their citizens to ease some of the restriction, against the fear of a new peak in infections. In this study, we wanted to quantify the relative contribution of mobility restrictions, and that of behavioral changes that occurred already before the lockdowns, on the reduction of transmission during lockdowns in Western countries in early 2020. Methods Incidence data of cases and deaths from the first wave of infections for 35 Western countries (32 European, plus Israel, USA and Canada) were analyzed using epidemiological compartment models in a Bayesian framework. Mobility data was used to estimate the timing of changes associated with a lockdown, and was correlated with estimated reductions of Rt. Results Across all countries, the initial median estimate for Rt was 3.6 (95% IQR 2.4–5.2), and it was reduced to 0.78 (95% IQR 0.58–1.01) during lockdown. 48% (18–65%) of the reduction occurred already in the week before lockdown, with lockdown itself causing the remaining drop in transmission. A lower Rt during lockdown was independently associated with an increased time spent at home (0.21 per 10% more time, p < 0.007), and decreased mobility related to retail and recreation (0.07 per 10% less mobility, p < 0.008). Conclusions In a Western population unaware of the risk, SARS-CoV-2 can be highly contagious with a reproduction number R0 > 5. Our results are consistent with evidence that recreational activities (including restaurant and bar visits) enable super-spreading events. Exiting from lockdown therefore requires continued physical distancing and tight control on this kind of activities.


2021 ◽  
Author(s):  
Koen Deforche ◽  
Jurgen Vercauteren ◽  
Viktor Müller ◽  
Anne-Mieke Vandamme

Abstract Background The COVID-19 pandemic has prompted a lockdown in many countries to control the exponential spread of the SARS-CoV-2 virus, hereby reducing the time-varying basic reproduction number (Rt) to below one. Governments are looking for evidence to balance the demand of their citizens to ease some of the restriction, against the fear of a new peak in infections. In this study, we wanted to quantify the relative contribution of mobility restrictions, and that of behavioral changes that occurred already before the lockdowns, on the reduction of transmission during lockdowns in Western countries in early 2020. Methods Incidence data of cases and deaths from the first wave of infections for 35 Western countries (32 European, plus Israel, USA and Canada) were analyzed using epidemiological compartment models in a Bayesian framework. Mobility data was used to estimate the timing of changes associated with a lockdown, and was correlated with estimated reductions of Rt. Results Across all countries, the initial median estimate for Rt was 3.6 (95% IQR 2.4 – 5.2), and it was reduced to 0.78 (95% IQR 0.58 – 1.01) during lockdown. 48% (18% – 65%) of the reduction occurred already in the week before lockdown, with lockdown itself causing the remaining drop in transmission. A lower Rt during lockdown was independently associated with an increased time spent at home (0.21 per 10% more time, p < 0.007), and decreased mobility related to retail and recreation (0.07 per 10% less mobility, p < 0.008). Conclusions In a Western population unaware of the risk, SARS-CoV-2 can be highly contagious with a reproduction number R0 > 5. Our results are consistent with evidence that recreational activities (including restaurant and bar visits) enable super-spreading events. Exiting from lockdown therefore requires continued physical distancing and tight control on this kind of activities.


Author(s):  
Douglas D. Gunzler ◽  
Ashwini R. Sehgal

AbstractThe basic reproduction number is the average number of people to whom an infected person transmits the infection when virtually all individuals in a population are susceptible. We sought to calculate the current reproduction number for COVID-19 for each state in the United States. For the entire United States, the time-varying reproduction number declined from 4.02 to 1.51 between March 17 and April 1, 2020. We also found that the time-varying reproduction number for COVID-19 has declined in most states over the same two week period which suggests that social isolation measures may be having a beneficial effect.


Author(s):  
Pratip Shil ◽  
Nitin M. Atre ◽  
Avinash A. Patil ◽  
Babasaheb V. Tandale ◽  
Priya Abraham

J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 86-100
Author(s):  
Nita H. Shah ◽  
Ankush H. Suthar ◽  
Ekta N. Jayswal ◽  
Ankit Sikarwar

In this article, a time-dependent susceptible-infected-recovered (SIR) model is constructed to investigate the transmission rate of COVID-19 in various regions of India. The model included the fundamental parameters on which the transmission rate of the infection is dependent, like the population density, contact rate, recovery rate, and intensity of the infection in the respective region. Looking at the great diversity in different geographic locations in India, we determined to calculate the basic reproduction number for all Indian districts based on the COVID-19 data till 7 July 2020. By preparing district-wise spatial distribution maps with the help of ArcGIS 10.2, the model was employed to show the effect of complete lockdown on the transmission rate of the COVID-19 infection in Indian districts. Moreover, with the model's transformation to the fractional ordered dynamical system, we found that the nature of the proposed SIR model is different for the different order of the systems. The sensitivity analysis of the basic reproduction number is done graphically which forecasts the change in the transmission rate of COVID-19 infection with change in different parameters. In the numerical simulation section, oscillations and variations in the model compartments are shown for two different situations, with and without lockdown.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qing Cheng ◽  
Zeyi Liu ◽  
Guangquan Cheng ◽  
Jincai Huang

AbstractBeginning on December 31, 2019, the large-scale novel coronavirus disease 2019 (COVID-19) emerged in China. Tracking and analysing the heterogeneity and effectiveness of cities’ prevention and control of the COVID-19 epidemic is essential to design and adjust epidemic prevention and control measures. The number of newly confirmed cases in 25 of China’s most-affected cities for the COVID-19 epidemic from January 11 to February 10 was collected. The heterogeneity and effectiveness of these 25 cities’ prevention and control measures for COVID-19 were analysed by using an estimated time-varying reproduction number method and a serial correlation method. The results showed that the effective reproduction number (R) in 25 cities showed a downward trend overall, but there was a significant difference in the R change trends among cities, indicating that there was heterogeneity in the spread and control of COVID-19 in cities. Moreover, the COVID-19 control in 21 of 25 cities was effective, and the risk of infection decreased because their R had dropped below 1 by February 10, 2020. In contrast, the cities of Wuhan, Tianmen, Ezhou and Enshi still had difficulty effectively controlling the COVID-19 epidemic in a short period of time because their R was greater than 1.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dipo Aldila ◽  
Brenda M. Samiadji ◽  
Gracia M. Simorangkir ◽  
Sarbaz H. A. Khosnaw ◽  
Muhammad Shahzad

Abstract Objective Several essential factors have played a crucial role in the spreading mechanism of COVID-19 (Coronavirus disease 2019) in the human population. These factors include undetected cases, asymptomatic cases, and several non-pharmaceutical interventions. Because of the rapid spread of COVID-19 worldwide, understanding the significance of these factors is crucial in determining whether COVID-19 will be eradicated or persist in the population. Hence, in this study, we establish a new mathematical model to predict the spread of COVID-19 considering mentioned factors. Results Infection detection and vaccination have the potential to eradicate COVID-19 from Jakarta. From the sensitivity analysis, we find that rapid testing is crucial in reducing the basic reproduction number when COVID-19 is endemic in the population rather than contact trace. Furthermore, our results indicate that a vaccination strategy has the potential to relax social distancing rules, while maintaining the basic reproduction number at the minimum possible, and also eradicate COVID-19 from the population with a higher vaccination rate. In conclusion, our model proposed a mathematical model that can be used by Jakarta’s government to relax social distancing policy by relying on future COVID-19 vaccine potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sahamoddin Khailaie ◽  
Tanmay Mitra ◽  
Arnab Bandyopadhyay ◽  
Marta Schips ◽  
Pietro Mascheroni ◽  
...  

Abstract Background SARS-CoV-2 has induced a worldwide pandemic and subsequent non-pharmaceutical interventions (NPIs) to control the spread of the virus. As in many countries, the SARS-CoV-2 pandemic in Germany has led to a consecutive roll-out of different NPIs. As these NPIs have (largely unknown) adverse effects, targeting them precisely and monitoring their effectiveness are essential. We developed a compartmental infection dynamics model with specific features of SARS-CoV-2 that allows daily estimation of a time-varying reproduction number and published this information openly since the beginning of April 2020. Here, we present the transmission dynamics in Germany over time to understand the effect of NPIs and allow adaptive forecasts of the epidemic progression. Methods We used a data-driven estimation of the evolution of the reproduction number for viral spreading in Germany as well as in all its federal states using our model. Using parameter estimates from literature and, alternatively, with parameters derived from a fit to the initial phase of COVID-19 spread in different regions of Italy, the model was optimized to fit data from the Robert Koch Institute. Results The time-varying reproduction number (Rt) in Germany decreased to <1 in early April 2020, 2–3 weeks after the implementation of NPIs. Partial release of NPIs both nationally and on federal state level correlated with moderate increases in Rt until August 2020. Implications of state-specific Rt on other states and on national level are characterized. Retrospective evaluation of the model shows excellent agreement with the data and usage of inpatient facilities well within the healthcare limit. While short-term predictions may work for a few weeks, long-term projections are complicated by unpredictable structural changes. Conclusions The estimated fraction of immunized population by August 2020 warns of a renewed outbreak upon release of measures. A low detection rate prolongs the delay reaching a low case incidence number upon release, showing the importance of an effective testing-quarantine strategy. We show that real-time monitoring of transmission dynamics is important to evaluate the extent of the outbreak, short-term projections for the burden on the healthcare system, and their response to policy changes.


Sign in / Sign up

Export Citation Format

Share Document