scholarly journals Adult survival is reduced when endogenous period deviates from 24h in a non-human primate (Microcebus murinus), depending on sex and season

2020 ◽  
Author(s):  
Clara Hozer ◽  
Martine Perret ◽  
Samuel Pavard ◽  
Fabien Pifferi

SummaryCircadian rhythms are ubiquitous attributes across living organisms and allow the coordination of internal biological functions with optimal phases of the environment, suggesting a significant adaptive advantage. The endogenous period called tau lies close to 24h and is thought to be implicated in individuals’ fitness: according to the circadian resonance theory, fitness is reduced when tau gets far to 24h. In this study, we measured the endogenous period of 142 mouse lemurs (Microcebus. murinus), and analyzed how it affects their survival. We found different effects according to sex and season. No impact of tau on mortality was found in females. However, in males, the deviation of tau from 24h substantially increased mortality, particularly during the inactive season (winter). These results, comparable to other observations in mice or drosophila, show that captive gray mouse lemurs enjoy better fitness when their circadian period closely matches the environmental periodicity. In addition to their deep implications in health and aging research, these results raise further ecological and evolutionary issues regarding the relationships between fitness and circadian clock.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Clara Hozer ◽  
Martine Perret ◽  
Samuel Pavard ◽  
Fabien Pifferi

Abstract Circadian rhythms are ubiquitous attributes across living organisms and allow the coordination of internal biological functions with optimal phases of the environment, suggesting a significant adaptive advantage. The endogenous period called tau lies close to 24 h and is thought to be implicated in individuals’ fitness: according to the circadian resonance theory, fitness is reduced when tau gets far from 24 h. In this study, we measured the endogenous period of 142 mouse lemurs (Microcebus murinus), and analyzed how it is related to their survival. We found different effects according to sex and season. No impact of tau on mortality was found in females. However, in males, the deviation of tau from 24 h substantially correlates with an increase in mortality, particularly during the inactive season (winter). These results, comparable to other observations in mice or drosophila, show that captive gray mouse lemurs enjoy better fitness when their circadian period closely matches the environmental periodicity. In addition to their deep implications in health and aging research, these results raise further ecological and evolutionary issues regarding the relationships between fitness and circadian clock.


Author(s):  
Pasquale F. Innominato ◽  
David Spiegel

The circadian timing system temporally regulates biological functions relevant for psycho-physical wellbeing, spanning all the systems related to health. Hence, disruption of circadian rhythms, along with sleep cycles, is associated with the development of several diseases, including cancer. Moreover, altered circadian and sleep functions negatively impact on cancer patients’ quality of life and survival, above and beyond known determinants of outcome. This alteration can occur as a consequence of cancer, but also of anti-cancer treatments. Indeed, circadian rhythms govern also the ability of detoxifying chemotherapy agents across the 24 hours. Hence, adapting chemotherapy delivery to the molecular oscillations in relevant drug pathways can decrease toxicity to healthy cells, while increasing the number of cancer cells killing. This chronomodulated chemotherapy approach, together with the maintenance of proper circadian function throughtout the whole disease challenge, would finally result in safer and more active anticancer treatments, and in patients experiencing better quality and quantity of life.


Author(s):  
Shuo Wang ◽  
Chuanbin Mao ◽  
Shanrong Liu

AbstractIn recent years, noncoding gene (NCG) translation events have been frequently discovered. The resultant peptides, as novel findings in the life sciences, perform unexpected functions of increasingly recognized importance in many fundamental biological and pathological processes. The emergence of these novel peptides, in turn, has advanced the field of genomics while indispensably aiding living organisms. The peptides from NCGs serve as important links between extracellular stimuli and intracellular adjustment mechanisms. These peptides are also important entry points for further exploration of the mysteries of life that may trigger a new round of revolutionary biotechnological discoveries. Insights into NCG-derived peptides will assist in understanding the secrets of life and the causes of diseases, and will also open up new paths to the treatment of diseases such as cancer. Here, a critical review is presented on the action modes and biological functions of the peptides encoded by NCGs. The challenges and future trends in searching for and studying NCG peptides are also critically discussed.


2021 ◽  
Author(s):  
Blandine Chazarin ◽  
Margaux Benhaim-Delarbre ◽  
Charlotte Brun ◽  
Aude Anzeraey ◽  
Fabrice Bertile ◽  
...  

Grey mouse lemurs (Microcebus murinus) are a primate species exhibiting strong physiological seasonality in response to environmental energetic constraint. They notably store large amounts of lipids during early winter (EW), which are thereafter mobilized during late winter (LW), when food availability is low. In addition, they develop glucose intolerance in LW only. To decipher how the hepatic mechanisms may support such metabolic flexibility, we analyzed the liver proteome of adult captive male mouse lemurs, which seasonal regulations of metabolism and reproduction are comparable to their wild counterparts, during the phases of either constitution or use of fat reserves. We highlight profound changes that reflect fat accretion in EW at the whole-body level, however, without triggering an ectopic storage of fat in the liver. Moreover, molecular regulations would be in line with the lowering of liver glucose utilization in LW, and thus with reduced tolerance to glucose. However, no major regulation was seen in insulin signaling/resistance pathways, which suggests that glucose intolerance does not reach a pathological stage. Finally, fat mobilization in LW appeared possibly linked to reactivation of the reproductive system and enhanced liver detoxification may reflect an anticipation to return to summer levels of food intake. Altogether, these results show that the physiology of mouse lemurs during winter relies on solid molecular foundations in liver processes to adapt fuel partitioning while avoiding reaching a pathological state despite large lipid fluxes. This work emphasizes how the mouse lemur is of primary interest for identifying molecular mechanisms relevant to biomedical field.


2006 ◽  
Vol 27 (7) ◽  
pp. 1045-1049 ◽  
Author(s):  
Marine Joly ◽  
Bertrand Deputte ◽  
Jean-Michel Verdier

Sign in / Sign up

Export Citation Format

Share Document