scholarly journals The infection cushion: a fungal “weapon” of plant-biomass destruction

2020 ◽  
Author(s):  
Mathias Choquer ◽  
Christine Rascle ◽  
Isabelle R Gonçalves ◽  
Amélie de Vallée ◽  
Cécile Ribot ◽  
...  

SummaryGrey mold disease affects fruits, vegetables and ornamental plants around the world, causing considerable losses every year. Its causing agent, the necrotrophic fungus Botrytis cinerea, produces infection cushions (IC) that are compound appressorial structures dedicated to the penetration of the plant tissues.A microarray analysis was performed to identify genes up-regulated in mature IC. The expression data were supported by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and mutagenesis of two candidate genes.1,231 up-regulated genes and 79 up-accumulated proteins were identified. They highlight a secretion of ROS, secondary metabolites including phytotoxins, and proteins involved in virulence: proteases, plant cell wall degrading enzymes and necrosis inducers. The role in pathogenesis was confirmed for two up-regulated fasciclin genes. DHN-melanin pathway and chitin deacetylases genes are up-regulated and the conversion of chitin into chitosan was confirmed by differential staining of the IC cell wall. In addition, up-regulation of sugar transport and sugar catabolism encoding genes was found.These results support a role for the B. cinerea IC in plant penetration and suggest other unexpected roles for this fungal organ, in camouflage, necrotrophy or nutrition of the pathogen.

2020 ◽  
Vol 117 (11) ◽  
pp. 6003-6013 ◽  
Author(s):  
Vincent W. Wu ◽  
Nils Thieme ◽  
Lori B. Huberman ◽  
Axel Dietschmann ◽  
David J. Kowbel ◽  
...  

Filamentous fungi, such asNeurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling ofN. crassaon 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors inN. crassaand characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


2020 ◽  
Vol 295 (33) ◽  
pp. 11833-11844
Author(s):  
Wiebke Haeger ◽  
Jana Henning ◽  
David G. Heckel ◽  
Yannick Pauchet ◽  
Roy Kirsch

Plant cell wall–associated polygalacturonase-inhibiting proteins (PGIPs) are widely distributed in the plant kingdom. They play a crucial role in plant defense against phytopathogens by inhibiting microbial polygalacturonases (PGs). PGs hydrolyze the cell wall polysaccharide pectin and are among the first enzymes to be secreted during plant infection. Recent studies demonstrated that herbivorous insects express their own PG multi-gene families, raising the question whether PGIPs also inhibit insect PGs and protect plants from herbivores. Preliminary evidence suggested that PGIPs may negatively influence larval growth of the leaf beetle Phaedon cochleariae (Coleoptera: Chrysomelidae) and identified BrPGIP3 from Chinese cabbage (Brassica rapa ssp. pekinensis) as a candidate. PGIPs are predominantly studied in planta because their heterologous expression in microbial systems is problematic and instability and aggregation of recombinant PGIPs has complicated in vitro inhibition assays. To minimize aggregate formation, we heterologously expressed BrPGIP3 fused to a glycosylphosphatidylinositol (GPI) membrane anchor, immobilizing it on the extracellular surface of insect cells. We demonstrated that BrPGIP3_GPI inhibited several P. cochleariae PGs in vitro, providing the first direct evidence of an interaction between a plant PGIP and an animal PG. Thus, plant PGIPs not only confer resistance against phytopathogens, but may also aid in defense against herbivorous beetles.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7220
Author(s):  
Yanhua Dou ◽  
Yan Yang ◽  
Nitesh Kumar Mund ◽  
Yanping Wei ◽  
Yisong Liu ◽  
...  

Fungal pathogens have evolved combinations of plant cell-wall-degrading enzymes (PCWDEs) to deconstruct host plant cell walls (PCWs). An understanding of this process is hoped to create a basis for improving plant biomass conversion efficiency into sustainable biofuels and bioproducts. Here, an approach integrating enzyme activity assay, biomass pretreatment, field emission scanning electron microscopy (FESEM), and genomic analysis of PCWDEs were applied to examine digestibility or degradability of selected woody and herbaceous biomass by pathogenic fungi. Preferred hydrolysis of apple tree branch, rapeseed straw, or wheat straw were observed by the apple-tree-specific pathogen Valsa mali, the rapeseed pathogen Sclerotinia sclerotiorum, and the wheat pathogen Rhizoctonia cerealis, respectively. Delignification by peracetic acid (PAA) pretreatment increased PCW digestibility, and the increase was generally more profound with non-host than host PCW substrates. Hemicellulase pretreatment slightly reduced or had no effect on hemicellulose content in the PCW substrates tested; however, the pretreatment significantly changed hydrolytic preferences of the selected pathogens, indicating a role of hemicellulose branching in PCW digestibility. Cellulose organization appears to also impact digestibility of host PCWs, as reflected by differences in cellulose microfibril organization in woody and herbaceous PCWs and variation in cellulose-binding domain organization in cellulases of pathogenic fungi, which is known to influence enzyme access to cellulose. Taken together, this study highlighted the importance of chemical structure of both hemicelluloses and cellulose in host PCW digestibility by fungal pathogens.


2021 ◽  
Author(s):  
Louise Emma Crozier ◽  
Jacqueline Marshall ◽  
Ashleigh Holmes ◽  
Kathryn Wright ◽  
Yannick Rossez ◽  
...  

Arabinose is a major plant aldopentose in the form of arabinans complexed in cell wall polysaccharides or glycoproteins (AGP), but comparatively rare as a monosaccharide. L-arabinose is an important bacterial metabolite, accessed by pectolytic microorganisms such as Pectobacterium atrosepticum via pectin and hemicellulose degrading enzymes. However, not all plant-associated microbes encode cell wall degrading enzymes, yet can metabolise L-arabinose, raising questions about their use of and access to the glycan in plants. Therefore, we examined L-arabinose metabolism in the food-borne pathogen Escherichia coli O157:H7 (isolate Sakai) during its colonisation of plants. L-arabinose metabolism (araBA) and transport (araF) genes were activated at 18 C in vitro by L-arabinose and expressed over prolonged periods in planta. Although deletion of araBAD did not impact the colonisation ability of E. coli O157:H7 (Sakai) on plants, araA was induced on exposure to spinach cell wall polysaccharides. Furthermore, debranched and arabinan oligosaccharides induced ara metabolism gene expression in vitro, and stimulated modest proliferation, while immobilised pectin did not. Thus, E. coli O157:H7 (Sakai) can utilise pectin/AGP-derived L-arabinose as a metabolite, but differs fundamentally in ara gene organisation, transport and regulation from the related pectinolytic species P. atrosepticum, reflective of distinct plant-associated lifestyles.


2021 ◽  
Author(s):  
Abhijeet Roy ◽  
Barsha Kalita ◽  
Aiswarya Jayaprakash ◽  
Annamalai Arunachalam ◽  
Lakshmi PTV

Abstract Fusarium oxysporum f. sp. lycopersici (Fol), a causal organism of Fusarium wilt in the tomato plant, secretes cell wall degrading enzymes, also known as carbohydrate-active enzymes (CAZymes). These are crucial during colonization and pathogenesis, as evidenced by several proteomic studies, revealing the importance of these CAZymes in virulence and pathogenicity. However, few of them have been done in-planta, exhibiting differences in the expression of these cell wall degrading enzymes compared to in-vitro studies. Therefore, to explore the CAZymes involved in pathogenesis while residing in the host plant, an in-planta (xylem sap) proteomics of a susceptible tomato variety affected with Fol was done. Most of these CAZymes belonged to the hydrolase and oxidoreductase families having no significant homology with tomato proteins. Nearly 90% of them were predicted to be soluble and extracellular. The core CAZymes families with interactional evidence identified were AA3, GH3, GH18, GH20, GH28, GH43, GH47, GH55 and CE8. Thus, apart from annotating some of the hypothetical proteins to be CAZymes, the study sheds light on CAZymes families that may have a role in the pathogenesis and survival of this fungus in the susceptible tomato plant.


2019 ◽  
Author(s):  
Kamal Kumar Malukani ◽  
Ashish Ranjan ◽  
Hota Shiva Jyothi ◽  
Hitendra Kumar Patel ◽  
Ramesh V. Sonti

AbstractPlant pathogens secrete cell wall degrading enzymes (CWDEs) to degrade various components of the plant cell wall. Plants sense this cell wall damage as a mark of infection and induce immune responses. Little is known about the plant functions that are involved in the elaboration of cell wall damage-induced immune responses. Transcriptome analysis revealed that a rice receptor kinase, WALL-ASSOCIATED KINASE-LIKE 21 (OsWAKL21.2), is upregulated following treatment with either Xanthomonas oryzae pv. oryzae (Xoo, a bacterial pathogen) or lipaseA/esterase (LipA: a CWDE of Xoo). Downregulation of OsWAKL21.2 attenuates LipA mediated immune responses. Overexpression of OsWAKL21.2 in rice mimics LipA treatment mediated induction of immune responses and enhanced expression of defence related genes, indicating it could be involved in the perception of LipA induced cell wall damage in rice. OsWAKL21.2 is a dual function kinase having in-vitro kinase and guanylate cyclase (GC) activities. Ectopic expression of OsWAKL21.2 in Arabidopsis also activates plant immune responses. Interestingly, OsWAKL21.2 needs kinase activity to activate rice immune responses while in Arabidopsis it needs GC activity. Our study reveals a novel receptor kinase involved in elaboration of cell wall damage induced rice immune responses that can activate similar immune responses in two different species via two different mechanisms.One sentence SummaryA novel rice receptor WAKL21 that sense cell wall damage caused by Xanthomonas secreted cell wall degrading enzyme to induce immune responses.


2014 ◽  
Vol 27 (8) ◽  
pp. 781-792 ◽  
Author(s):  
Majse Nafisi ◽  
Maria Stranne ◽  
Lisha Zhang ◽  
Jan A. L. van Kan ◽  
Yumiko Sakuragi

The plant cell wall is one of the first physical interfaces encountered by plant pathogens and consists of polysaccharides, of which arabinan is an important constituent. During infection, the necrotrophic plant pathogen Botrytis cinerea secretes a cocktail of plant cell-wall-degrading enzymes, including endo-arabinanase activity, which carries out the breakdown of arabinan. The roles of arabinan and endo-arabinanases during microbial infection were thus far elusive. In this study, the gene Bcara1 encoding for a novel α-1,5-L-endo-arabinanase was identified and the heterologously expressed BcAra1 protein was shown to hydrolyze linear arabinan with high efficiency whereas little or no activity was observed against the other oligo- and polysaccharides tested. The Bcara1 knockout mutants displayed reduced arabinanase activity in vitro and severe retardation in secondary lesion formation during infection of Arabidopsis leaves. These results indicate that BcAra1 is a novel endo-arabinanase and plays an important role during the infection of Arabidopsis. Interestingly, the level of Bcara1 transcript was considerably lower during the infection of Nicotiana benthamiana compared with Arabidopsis and, consequently, the ΔBcara1 mutants showed the wild-type level of virulence on N. benthamiana leaves. These results support the conclusion that the expression of Bcara1 is host dependent and is a key determinant of the disease outcome.


1998 ◽  
Vol 64 (12) ◽  
pp. 4918-4923 ◽  
Author(s):  
Julie Tans-Kersten ◽  
Yanfen Guan ◽  
Caitilyn Allen

ABSTRACT Ralstonia (Pseudomonas)solanacearum causes bacterial wilt, a serious disease of many crop plants. The pathogen produces several extracellular plant cell wall-degrading enzymes, including polygalacturonases (PGs) and pectin methylesterase (Pme). Pme removes methyl groups from pectin, thereby facilitating subsequent breakdown of this cell wall component by PGs, which are known bacterial wilt virulence factors. R. solanacearum PGs could not degrade 93% methylated pectin unless the substrate was first demethylated by Pme, but as the degree of methylation of the pectin substrate decreased, PG activity increased. Primers derived from a published pme sequence generated an 800-bp DNA probe fragment, which identified Pme-encoding plasmids from a R. solanacearum genomic library. A pmechromosomal mutant had no detectable Pme activity in vitro and no longer grew on 93% methylated pectin as a carbon source. Curiously, the pme mutant, which had no detectable PG activity on highly methylated pectin, was just as virulent as the wild-type strain on tomato, eggplant (aubergine), and tobacco. Since PG activity is required for full virulence, this result suggests that the pectin in these particular hosts may not be highly methylated, or that the breakdown of highly methylated pectin is not a significant factor in the disease process in general. A positive response regulator of PG production called PehR was not required for wild-type Pme production. However, a mutant strain lacking PhcA, which is a global regulator of several virulence genes, produced no detectable Pme activity. Thus,pme expression is directly or indirectly regulated by PhcA but not by PehR.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sang-Kyu Jung ◽  
Vinuselvi Parisutham ◽  
Seong Hun Jeong ◽  
Sung Kuk Lee

A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such asEscherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinantE. coliorZ. mobilisand allow successful consolidated bioprocessing (CBP) in these microorganisms.In-plantaexpression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies.


2015 ◽  
Vol 28 (10) ◽  
pp. 1091-1101 ◽  
Author(s):  
Chenghua Zhang ◽  
Yifan He ◽  
Pinkuan Zhu ◽  
Lu Chen ◽  
Yiwen Wang ◽  
...  

Botrytis cinerea is a necrotrophic pathogen that causes gray mold disease in a broad range of plants. Dihydroxynaphthalene (DHN) melanin is a major component of the extracellular matrix of B. cinerea, but knowledge of the exact role of melanin biosynthesis in this pathogen is unclear. In this study, we characterize two genes in B. cinerea, bcpks13 and bcbrn1, encoding polyketide synthase and tetrahydroxynaphthalene (THN) reductases, respectively, and both have predicted roles in DHN melanin biosynthesis. The ∆bcpks13 and ∆bcbrn1 mutants show white and orange pigmentation, respectively, and the mutants are also deficient in conidiation in vitro but show enhanced growth rates and virulence on hosts. Moreover, the mutants display elevated acidification of the complete medium (CM), probably due to oxalic acid secretion and secretion of cell wall–degrading enzymes, and preferably utilize plant cell-wall components as carbon sources for mycelium growth in vitro. In contrast, overexpression of bcbrn1 (OE::bcbrn1 strain) results in attenuated hydrolytic enzyme secretion, acidification ability, and virulence. Taken together, these results indicate that bcpks13 and bcbrn1 participate in diverse cellular and developmental processes, such as melanization and conidiation in B. cinerea in vitro, but they negatively regulate the virulence of this pathogen.


Sign in / Sign up

Export Citation Format

Share Document