scholarly journals A pentameric protein ring with novel architecture is required for herpesviral packaging

2020 ◽  
Author(s):  
Allison L. Didychuk ◽  
Stephanie N. Gates ◽  
Matthew R. Gardner ◽  
Lisa M. Strong ◽  
Andreas Martin ◽  
...  

Genome packaging in large double-stranded DNA viruses requires a powerful molecular motor to force the viral genome into nascent capsids. This process appears mechanistically similar in two evolutionarily distant viruses, the herpesviruses and the tailed bacteriophages, which infect different kingdoms of life. While the motor and mechanism as a whole are thought to be conserved, accessory factors that influence packaging are divergent and poorly understood, despite their essential roles. An accessory factor required for herpesviral packaging is encoded by ORF68 in the oncogenic virus Kaposi’s sarcoma-associated herpesvirus (KSHV), whose homolog in Epstein Barr Virus (EBV) is BFLF1. Here, we present structures of both KSHV ORF68 and EBV BFLF1, revealing that these proteins form a highly similar homopentameric ring. The central channel of this ring is positively charged, and we demonstrate that this region of KSHV ORF68 binds double-stranded DNA. Mutation of individual positively charged residues within but not outside the channel ablates DNA binding, and in the context of KSHV infection these mutants fail to package the viral genome or produce progeny virions. Thus, we propose a model in which ORF68 facilitates the transfer of newly replicated viral genomes to the packaging motor.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Allison L Didychuk ◽  
Stephanie N Gates ◽  
Matthew R Gardner ◽  
Lisa M Strong ◽  
Andreas Martin ◽  
...  

Genome packaging in large double-stranded DNA viruses requires a powerful molecular motor to force the viral genome into nascent capsids, which involves essential accessory factors that are poorly understood. Here, we present structures of two such accessory factors from the oncogenic herpesviruses Kaposi’s sarcoma-associated herpesvirus (KSHV; ORF68) and Epstein–Barr virus (EBV; BFLF1). These homologous proteins form highly similar homopentameric rings with a positively charged central channel that binds double-stranded DNA. Mutation of individual positively charged residues within but not outside the channel ablates DNA binding, and in the context of KSHV infection, these mutants fail to package the viral genome or produce progeny virions. Thus, we propose a model in which ORF68 facilitates the transfer of newly replicated viral genomes to the packaging motor.


2019 ◽  
Vol 6 (1) ◽  
pp. 275-296 ◽  
Author(s):  
Tami L. Coursey ◽  
Alison A. McBride

Persistent viral infections require a host cell reservoir that maintains functional copies of the viral genome. To this end, several DNA viruses maintain their genomes as extrachromosomal DNA minichromosomes in actively dividing cells. These viruses typically encode a viral protein that binds specifically to viral DNA genomes and tethers them to host mitotic chromosomes, thus enabling the viral genomes to hitchhike or piggyback into daughter cells. Viruses that use this tethering mechanism include papillomaviruses and the gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. This review describes the advantages and consequences of persistent extrachromosomal viral genome replication.


2017 ◽  
Vol 92 (2) ◽  
Author(s):  
Eric R. Weiss ◽  
Susanna L. Lamers ◽  
Jennifer L. Henderson ◽  
Alexandre Melnikov ◽  
Mohan Somasundaran ◽  
...  

ABSTRACTOver 90% of the world's population is persistently infected with Epstein-Barr virus. While EBV does not cause disease in most individuals, it is the common cause of acute infectious mononucleosis (AIM) and has been associated with several cancers and autoimmune diseases, highlighting a need for a preventive vaccine. At present, very few primary, circulating EBV genomes have been sequenced directly from infected individuals. While low levels of diversity and low viral evolution rates have been predicted for double-stranded DNA (dsDNA) viruses, recent studies have demonstrated appreciable diversity in common dsDNA pathogens (e.g., cytomegalovirus). Here, we report 40 full-length EBV genome sequences obtained from matched oral wash and B cell fractions from a cohort of 10 AIM patients. Both intra- and interpatient diversity were observed across the length of the entire viral genome. Diversity was most pronounced in viral genes required for establishing latent infection and persistence, with appreciable levels of diversity also detected in structural genes, including envelope glycoproteins. Interestingly, intrapatient diversity declined significantly over time (P< 0.01), and this was particularly evident on comparison of viral genomes sequenced from B cell fractions in early primary infection and convalescence (P< 0.001). B cell-associated viral genomes were observed to converge, becoming nearly identical to the B95.8 reference genome over time (Spearman rank-order correlation test;r= −0.5589,P= 0.0264). The reduction in diversity was most marked in the EBV latency genes. In summary, our data suggest independent convergence of diverse viral genome sequences toward a reference-like strain within a relatively short period following primary EBV infection.IMPORTANCEIdentification of viral proteins with low variability and high immunogenicity is important for the development of a protective vaccine. Knowledge of genome diversity within circulating viral populations is a key step in this process, as is the expansion of intrahost genomic variation during infection. We report full-length EBV genomes sequenced from the blood and oral wash of 10 individuals early in primary infection and during convalescence. Our data demonstrate considerable diversity within the pool of circulating EBV strains, as well as within individual patients. Overall viral diversity decreased from early to persistent infection, particularly in latently infected B cells, which serve as the viral reservoir. Reduction in B cell-associated viral genome diversity coincided with a convergence toward a reference-like EBV genotype. Greater convergence positively correlated with time after infection, suggesting that the reference-like genome is the result of selection.


Author(s):  
S.I. Kutukova ◽  
A.B. Chukhlovin ◽  
A.I. Yaremenko ◽  
Yu.V. Ivaskova ◽  
A.Ya. Razumova ◽  
...  

The aim of the study was to assess the prevalence of DNA viruses (HSV I and II, CMV, EBV, HPV6.11, HPV16 and HPV18) in the native oral mucosa of healthy volunteers (n=50; 30 men (60.0%), 20 women (40.0%); 25—74 years, median age — 55.0 years (95% CI 47.60-56.76)). All samples of the normal oral mucosa were detected by real-time PCR to detect viral DNA. The majority of the examined — 76% (33/50) — revealed the DNA: one type of viral DNA in 17 (38.00%) of the examined, a combination of the two types in 14 (28.00%). In the normal oral mucosa, DNA of Epstein-Barr virus was significantly more often detected: 15 (30.00%) (p = 0.0276) and human papilloma viruses 27 (54.00%) (p <0.0001), especially HPV-18 (24 (48.00%)): mono-association in 9 (18.00%) examined and in 7 (14.00%) in combination with EBV DNA (p = 0.0253).


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 779
Author(s):  
Man Teng ◽  
Yongxiu Yao ◽  
Venugopal Nair ◽  
Jun Luo

In recent years, the CRISPR/Cas9-based gene-editing techniques have been well developed and applied widely in several aspects of research in the biological sciences, in many species, including humans, animals, plants, and even in viruses. Modification of the viral genome is crucial for revealing gene function, virus pathogenesis, gene therapy, genetic engineering, and vaccine development. Herein, we have provided a brief review of the different technologies for the modification of the viral genomes. Particularly, we have focused on the recently developed CRISPR/Cas9-based gene-editing system, detailing its origin, functional principles, and touching on its latest achievements in virology research and applications in vaccine development, especially in large DNA viruses of humans and animals. Future prospects of CRISPR/Cas9-based gene-editing technology in virology research, including the potential shortcomings, are also discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farjana Saiada ◽  
Kun Zhang ◽  
Renfeng Li

Abstract Background Sterile alpha motif and HD domain 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase (dNTPase) that restricts the infection of a variety of RNA and DNA viruses, including herpesviruses. The anti-viral function of SAMHD1 is associated with its dNTPase activity, which is regulated by several post-translational modifications, including phosphorylation, acetylation and ubiquitination. Our recent studies also demonstrated that the E3 SUMO ligase PIAS1 functions as an Epstein-Barr virus (EBV) restriction factor. However, whether SAMHD1 is regulated by PIAS1 to restrict EBV replication remains unknown. Results In this study, we showed that PIAS1 interacts with SAMHD1 and promotes its SUMOylation. We identified three lysine residues (K469, K595 and K622) located on the surface of SAMHD1 as the major SUMOylation sites. We demonstrated that phosphorylated SAMHD1 can be SUMOylated by PIAS1 and SUMOylated SAMHD1 can also be phosphorylated by viral protein kinases. We showed that SUMOylation-deficient SAMHD1 loses its anti-EBV activity. Furthermore, we demonstrated that SAMHD1 is associated with EBV genome in a PIAS1-dependent manner. Conclusion Our study reveals that PIAS1 synergizes with SAMHD1 to inhibit EBV lytic replication through protein–protein interaction and SUMOylation.


2021 ◽  
Vol 9 (2) ◽  
pp. 292
Author(s):  
Miroslava Šudomová ◽  
Sherif T. S. Hassan

Herpesviruses are DNA viruses that infect humans and animals with the ability to induce latent and lytic infections in their hosts, causing critical health complications. The enrolment of nutraceutical anti-herpesvirus drugs in clinical investigations with promising levels of reduced resistance, free or minimal cellular toxicity, and diverse mechanisms of action might be an effective way to defeat challenges that hurdle the progress of anti-herpesvirus drug development, including the problems with drug resistance and recurrent infections. Therefore, in this review, we aim to hunt down all investigations that feature the curative properties of curcumin, a principal bioactive phenolic compound of the spice turmeric, in regard to various human and animal herpesvirus infections and inflammation connected with these diseases. Curcumin was explored with potent antiherpetic actions against herpes simplex virus type 1 and type 2, human cytomegalovirus, Kaposi’s sarcoma-associated herpesvirus, Epstein–Barr virus, bovine herpesvirus 1, and pseudorabies virus. The mechanisms and pathways by which curcumin inhibits anti-herpesvirus activities by targeting multiple steps in herpesvirus life/infectious cycle are emphasized. Improved strategies to overcome bioavailability challenges that limit its use in clinical practice, along with approaches and new directions to enhance the anti-herpesvirus efficacy of this compound, are also reviewed. According to the reviewed studies, this paper presents curcumin as a promising natural drug for the prevention and treatment of herpesvirus infections and their associated inflammatory diseases.


Author(s):  
Misako Yajima ◽  
Risako Kakuta ◽  
Yutaro Saito ◽  
Shiori Kitaya ◽  
Atsushi Toyoda ◽  
...  

Epstein–Barr virus (EBV) establishes lifelong latent infection in the majority of healthy individuals, while it is a causative agent for various diseases, including some malignancies. Recent high-throughput sequencing results indicate that there are substantial levels of viral genome heterogeneity among different EBV strains. However, the extent of EBV strain variation among asymptomatically infected individuals remains elusive. Here, we present a streamlined experimental strategy to clone and sequence EBV genomes derived from human tonsillar tissues, which are the reservoirs of asymptomatic EBV infection. Complete EBV genome sequences, including those of repetitive regions, were determined for seven tonsil-derived EBV strains. Phylogenetic analyses based on the whole viral genome sequences of worldwide non-tumour-derived EBV strains revealed that Asian EBV strains could be divided into several distinct subgroups. EBV strains derived from nasopharyngeal carcinoma-endemic areas constitute different subgroups from a subgroup of EBV strains from non-endemic areas, including Japan. The results could be consistent with biased regional distribution of EBV-associated diseases depending on the different EBV strains colonizing different regions in Asian countries.


2020 ◽  
pp. 754-763
Author(s):  
Alan B. Rickinson ◽  
M.A. Epstein

Epstein–Barr virus is a human herpesvirus with a linear double-stranded DNA genome that is carried asymptomatically by most people. Symptomless primary infection is usual in childhood, establishing a lifelong carrier state where the virus persists as a latent infection of circulating B cells. The virus replicates recurrently in oropharyngeal epithelial cells, with consequent shedding of virus in saliva transmitting infection. Controversially, Epstein–Barr virus has been linked with certain autoimmune diseases. In particular, there is strong serologic and epidemiologic evidence to suggest that previous exposure to Epstein–Barr virus markedly increases the risk of developing multiple sclerosis. Although the Epstein–Barr virus/multiple sclerosis connection is receiving much attention, the mechanism that might underpin such an association remains uncertain.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Yuchen Zhang ◽  
Chang Jiang ◽  
Stephen J. Trudeau ◽  
Yohei Narita ◽  
Bo Zhao ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis. EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, posttransplant lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells, EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently performed a human genome-wide CRISPR screen that identified the chromatin assembly factor CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto newly synthesized host DNA, though its roles in EBV genome chromatin assembly are uncharacterized. Here, we found that CAF1 depletion triggered lytic reactivation and virion secretion from Burkitt cells, despite also strongly inducing interferon-stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1 and 3.3 and of repressive histone 3 lysine 9 and 27 trimethyl (H3K9me3 and H3K27me3) marks at multiple viral genome lytic cycle regulatory elements. Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1 expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and 3.3 were loaded on the EBV genome by this time point. Knockout of CAF1 subunit CHAF1B impaired establishment of latency in newly EBV-infected Burkitt cells. A nonredundant latency maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader histone regulatory homologue A (HIRA). Since EBV latency also requires histone chaperones alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX) and death domain-associated protein (DAXX), EBV coopts multiple host histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic approaches. IMPORTANCE Epstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, during which lytic cycle factors are silenced. This property complicated EBV’s discovery and facilitates tumor immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene silencing. Here, we identified histone chaperones CAF1 and HIRA, which have key roles in host DNA replication-dependent and replication-independent pathways, respectively, as important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV coopts multiple histone pathways to reprogram viral genomes and highlight targets for lytic induction therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document