scholarly journals Leaf and flower consumption modulate the drinking behavior in a folivorous-frugivorous arboreal mammal

2020 ◽  
Author(s):  
Óscar M. Chaves ◽  
Vanessa B. Fortes ◽  
Gabriela P. Hass ◽  
Renata B. Azevedo ◽  
Kathryn E. Stoner ◽  
...  

AbstractWater is vital for the survival of any species because of its key role in most physiological processes. However, little is known about the non-food-related water sources exploited by arboreal mammals, the seasonality of their drinking behavior and its potential drivers (including diet composition, temperature, and rainfall). We investigated this subject in 14 wild groups of brown howler monkeys (Alouatta guariba clamitans) inhabiting small, medium, and large Atlantic Forest fragments in southern Brazil. We found a wide variation in the mean rate of drinking among groups (range=0-16 records/day). Streams (44% of 1,258 records) and treeholes (26%) were the major types of water sources, followed by bromeliads in the canopy (16%), pools (11%), and rivers (3%). The type of source influenced whether howlers used a hand to access the water or not. Drinking tended to be evenly distributed throughout the year, except for a slightly lower number of records in the spring than in the other seasons, but it was unevenly distributed during the day. It increased in the afternoon in all groups, particularly during temperature peaks around 15:00 and 17:00. We found via generalized linear mixed modelling that the daily frequency of drinking was mainly influenced by flower (negatively) and leaf (positively) consumption, whereas fruit consumption, fragment size, rainfall, and mean ambient temperature played negligible roles. The influence of leaf consumption is compatible with the ‘metabolite detoxification hypothesis,’ which states that the processing of this fibrous food requires the ingestion of larger volumes of water to help in the detoxification/excretion of its metabolites. In sum, we found that irrespective of habitat size and climatic conditions, brown howlers seem to seek a positive water balance by complementing preformed and metabolic water with drinking water, even when it is associated with a high predation risk in terrestrial sources.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0236974
Author(s):  
Óscar M. Chaves ◽  
Vanessa B. Fortes ◽  
Gabriela P. Hass ◽  
Renata B. Azevedo ◽  
Kathryn E. Stoner ◽  
...  

Water is vital for the survival of any species because of its key role in most physiological processes. However, little is known about the non-food-related water sources exploited by arboreal mammals, the seasonality of their drinking behavior and its potential drivers, including diet composition, temperature, and rainfall. We investigated this subject in 14 wild groups of brown howler monkeys (Alouatta guariba clamitans) inhabiting small, medium, and large Atlantic Forest fragments in southern Brazil. We found a wide variation in the mean rate of drinking among groups (range = 0–16 records/day). Streams (44% of 1,258 records) and treeholes (26%) were the major types of water sources, followed by bromeliads in the canopy (16%), pools (11%), and rivers (3%). The type of source influenced whether howlers used a hand to access the water or not. Drinking tended to be evenly distributed throughout the year, except for a slightly lower number of records in the spring than in the other seasons, but it was unevenly distributed during the day. It increased in the afternoon in all groups, particularly during temperature peaks around 15:00 and 17:00. We found via generalized linear mixed modelling that the daily frequency of drinking was mainly influenced negatively by flower consumption and positively by weekly rainfall and ambient temperature, whereas fragment size and the consumption of fruit and leaves played negligible roles. Overall, we confirm the importance of preformed water in flowers to satisfy the howler’s water needs, whereas the influence of the climatic variables is compatible with the ‘thermoregulation/dehydration-avoiding hypothesis’. In sum, we found that irrespective of habitat characteristics, brown howlers seem to seek a positive water balance by complementing the water present in the diet with drinking water, even when it is associated with a high predation risk in terrestrial sources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah A. Boyle ◽  
Noé U. de la Sancha ◽  
Pastor Pérez ◽  
David Kabelik

AbstractSpecies that live in degraded habitats often show signs of physiological stress. Glucocorticoid hormones (e.g., corticosterone and cortisol) are often assessed as a proxy of the extent of physiological stress an animal has experienced. Our goal was to quantify glucocorticoids in free-ranging small mammals in fragments of Interior Atlantic Forest. We extracted glucocorticoids from fur samples of 106 small mammals (rodent genera Akodon and Oligoryzomys, and marsupial genera Gracilinanus and Marmosa) from six forest fragments (2–1200 ha) in the Reserva Natural Tapytá, Caazapá Department, Paraguay. To our knowledge, this is the first publication of corticosterone and cortisol levels for three of the four sampled genera (Akodon, Oligoryzomys, and Marmosa) in this forest system. We discovered three notable results. First, as predicted, glucocorticoid levels were higher in individuals living withing small forest fragments. Second, animals captured live using restraint trapping methods (Sherman traps) had higher glucocorticoid levels than those animals captured using kill traps (Victor traps), suggesting that hair glucocorticoid measures can reflect acute stress levels in addition to long-term glucocorticoid incorporation. These acute levels are likely due to urinary steroids diffusing into the hair shaft. This finding raises a concern about the use of certain trapping techniques in association with fur hormone analysis. Finally, as expected, we also detected genus-specific differences in glucocorticoid levels, as well as cortisol/corticosterone ratios.


2019 ◽  
Vol 36 (E) ◽  
pp. 124-137
Author(s):  
Hernando Criollo E. ◽  
Johanna Muñoz B. ◽  
Jorge Checa B. ◽  
Wilmer Noguera R.

The importance of coffee cultivation in Nariño is reflected in the fact that 64% of its municipalities grow coffee. The ruggedness of its Andean topography provides great diversity in terms of climatic conditions, which, in one way or another, affect the behavior of coffee in all its physiological processes. Therefore, this study sought to identify the variation in the growth processes and production processes in the different coffee areas of this department, including the coffee-growing municipalities Sandoná, Consacá, La Florida and La Unión in the Department of Nariño, using experimental lots located at different altitude ranges (B <1600msnm; M between 1600 and 1800msnm and A >1800msnm). The statistical design used for each municipality was Random Complete Blocks with three treatments and sixteen repetitions. The recorded climatic variables included photosynthetically active radiation, ambient temperature, precipitation and relative humidity, and the evaluated physiological variables were plant height, number of leaves, basal stem diameter, number of primary branches, number of secondary branches, length of primary branches, number of knots per branch and leaf area index. The variable plant height was statistically higher in the upper zone (A) in the municipalities La Florida (79.95 cm) and Consacá (64.31cm); in La Florida, the number of branches and the LAI were higher in the upper zone plants, while the diameter of the stems was higher in the middle zone. In the other municipalities, these variables were not affected by the altitude.


Sociobiology ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 5861
Author(s):  
Ana Isabel Sobreiro ◽  
Lucas Lopes da Silveira Peres ◽  
Jessica Amaral Henrique ◽  
Rosilda Mara Mussury ◽  
Valter Vieira Alves-Junior

Forest habitats are important sources of food and nesting resources for pollinators, primarily in urban areas and landscapes with intense agricultural activity. The forest fragmentation and environmental changes occurring in these green refuges are known to impose survival challenges to pollinating bees, leading to species loss. However, it is not well known how the species of bees that visit flowers are distributed in forest micro-environments. To fill this gap, we sampled flower visiting bees in a continuous forest matrix with micro-environments of two forest types (mature and regenerating forest). We examined how the local environmental changes and climatic conditions affect the composition and uniformity of bee communities in the different micro-environments. Our results indicated that both abundance and richness were similar between forest types studied here, however climatic conditions and plant flowering patterns affect the composition of bees. Thus, our results demonstrated that the continuous micro-environments can favor floral visits and the reintegration of bee communities, and still, that this strategy can be used to minimize the impacts of environmental changes at local scales.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1538 ◽  
Author(s):  
V. A. Tzanakakis ◽  
A. N. Angelakis ◽  
N. V. Paranychianakis ◽  
Y. G. Dialynas ◽  
G. Tchobanoglous

Crete, located in the South Mediterranean Sea, is characterized by long coastal areas, varied terrain relief and geology, and great spatial and inter-annual variations in precipitation. Under average meteorological conditions, the island is water-sufficient (969 mm precipitation; theoretical water potential 3284 hm3; and total water use 610 hm3). Agriculture is by far the greatest user of water (78% of total water use), followed by domestic use (21%). Despite the high average water availability, water scarcity events commonly occur, particularly in the eastern-south part of the island, driven by local climatic conditions and seasonal or geographical mismatches between water availability and demand. Other critical issues in water management include the over-exploitation of groundwater, accounting for 93% of the water used in agriculture; low water use efficiencies in the farms; limited use of non-conventional water sources (effluent reuse); lack of modern frameworks of control and monitoring; and inadequate cooperation among stakeholders. These deficiencies impact adversely water use efficiency, deteriorate quality of water resources, increase competition for water and water pricing, and impair agriculture and environment. Moreover, the water-limited areas may display low adaptation potential to climate variability and face increased risks for the human-managed and natural ecosystems. The development of appropriate water governance frameworks that promote the development of integrated water management plans and allow concurrently flexibility to account for local differentiations in social-economic favors is urgently needed to achieve efficient water management and to improve the adaptation to the changing climatic conditions. Specific corrective actions may include use of alternative water sources (e.g., treated effluent and brackish water), implementation of efficient water use practices, re-formation of pricing policy, efficient control and monitoring, and investment in research and innovation to support the above actions. It is necessary to strengthen the links across stakeholders (e.g., farmers, enterprises, corporations, institutes, universities, agencies, and public authorities), along with an effective and updated governance framework to address the critical issues in water management, facilitate knowledge transfer, and promote the efficient use of non-conventional water resources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kamila S. Bożek ◽  
Krystyna Żuk-Gołaszewska ◽  
Anna Bochenek ◽  
Janusz Gołaszewski ◽  
Hazem M. Kalaji

AbstractHow agricultural ecosystems adapt to climate change is one of the most important issues facing agronomists at the turn of the century. Understanding agricultural ecosystem responses requires assessing the relative shift in climatic constraints on crop production at regional scales such as the temperate zone. In this work we propose an approach to modeling the growth, development and yield of Triticum durum Desf. under the climatic conditions of north-eastern Poland. The model implements 13 non-measurable parameters, including climate conditions, agronomic factors, physiological processes, biophysical parameters, yield components and biological yield (latent variables), which are described by 33 measurable predictors as well as grain and straw yield (manifest variables). The agronomic factors latent variable was correlated with nitrogen fertilization and sowing density, and biological yield was correlated with grain yield and straw yield. An analysis of the model parameters revealed that a one unit increase in agronomic factors increased biological yield by 0.575. In turn, biological yield was most effectively determined by climate conditions (score of 60–62) and biophysical parameters (score of 60–67) in the 2nd node detectable stage and at the end of heading. The modeled configuration of latent and manifest variables was responsible for less than 70% of potential biological yield, which indicates that the growth and development of durum wheat in north-eastern Europe can be further optimized to achieve high and stable yields. The proposed model accounts for local climate conditions and physiological processes in plants, and it can be implemented to optimize agronomic practices in the cultivation of durum wheat and, consequently, to expand the area under T. durum to regions with a temperate climate.


2014 ◽  
Author(s):  
James J Roper ◽  
André M. X. Lima ◽  
Angélica M. K. Uejima

Food limitation may interact with nest predation and influence nesting patterns, such as breeding season length and renesting intervals. If so, reproductive effort should change with food availability. Thus, when food is limited, birds should have fewer attempts and shorter seasons than when food is not limiting. Here we experimentally test that increased food availability results in increased reproductive effort in a fragmented landscape in the Variable Antshrike (Thamnophilus caerulescens) in southern Brazil. We followed nesting pairs in five natural fragments (4, 23, 24, 112, 214 ha) in which food was supplemented for half of those pairs, beginning with the first nest. Nest success in the largest (214 ha) fragment was 59%, compared to 5% in the 112 ha fragment and no nest was successful in the smallest (24 ha) fragment. Birds were seen, but evidence of nesting was never found in the two smallest fragments. Pairs with supplemented food were more likely to increase clutch size from two to three eggs, tended to renest sooner (20 d on average) than control pairs. Also, fragment size interacted with breeding and pairs in the largest fragment had greater daily nest survival rates, and so nests tended to last longer, and so these pairs had fewer nesting attempts than those in the 112 ha fragment while more than those in the smallest fragment with nesting (24 ha). Clearly, pairs increased their reproductive effort when food was supplemented in comparison to control pairs and fragment size seems to influence both predation risk and food abundance.


Author(s):  
Alain Deloire ◽  
Suzy Rogiers ◽  
Guillaume Antalick ◽  
Anne Pellegrino

The chemical composition of berries at harvest, which will affect wine styles, is determined by complex physiological processes occurring from set through the fruit’s lifetime to maturity, and this is closely intertwined with environmental and crop management factors. Among those factors, climatic conditions within the fruit zone (i.e. microclimate), such as light and temperature, are well-known to affect the physiology of the fruit at the skin, pulp and seed levels. This article will present the potential of leaf thinning in the bunch zone to modify cluster microclimate and berry composition.


2021 ◽  
Vol 36 (1) ◽  
pp. 153-156
Author(s):  
R.A. Eshmuratov ◽  
D. Embergenov ◽  
G. Bayniyazova

In the article perennial ornamental, medicinal plants belonging to Stachys L. of the family Lamiaceae - Stachys byzantina C. Koch = S. lanata Jacq. and S. betonicaeflora Rupr. were the first described in detail the experimental data from the study of physiological processes in two unsalted (Tashkent) and saline (Mirzachul) soil-climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document