scholarly journals Nasal commensal, Staphylococcus epidermidis shapes the mucosal environment to prevent influenza virus invasion through Serpine1 induction

2020 ◽  
Author(s):  
Ara Jo ◽  
Jina Won ◽  
Chan Hee Chil ◽  
Jae Young Choi ◽  
Kang-Mu Lee ◽  
...  

ABSTRACTOur recent study presented evidence that Staphylococcus epidermidis (S. epidermidis) was the most frequently encountered microbiome component in healthy human nasal mucus and that S. epidermidis could induce interferon (IFN)-dependent innate immunity to control acute viral lung infection. The serine protease inhibitor Serpine1 was identified to inhibit influenza A virus (IAV) spread by inhibiting glycoprotein cleavage, and the current study supports an additional mechanism of Serpine1 induction in the nasal mucosa, which can be regulated through S. epidermidis and IFN signaling. The exposure of in vivo mice to human S. epidermidis increased IFN-λ secretion in nasal mucosa and prevented an increase in the burden of IAV in the lung. S. epidermidis-inoculated mice exhibited the significant induction of Serpine1 in vivo in the nasal mucosa, and by targeting airway protease, S. epidermidis-induced Serpine1 inhibited the intracellular invasion of IAV to the nasal epithelium and led to restriction of IAV spreading to the lung. Furthermore, IFN-λ secretion was involved in the regulation of Serpine1 in S. epidermidis-inoculated nasal epithelial cells and in vivo nasal mucosa, and this was biologically relevant for the role of Serpine1 as an interferon-stimulated gene in the upper airway. Together, our findings reveal that human nasal commensal S. epidermidis manipulates the suppression of serine protease in in vivo nasal mucosa through Serpine1 induction and protects the nasal mucosa from IAV invasion through IFN-λ signaling.IMPORTANCEPreviously, we proved that nasal microbiome could enhance IFN-related innate immune responses to protect the respiratory tract against influenza virus infection. The present study shows a great understanding of the intimate association of S. epidermidis-regulated IFN-lambda induction and serine protease inhibitor in nasal mucosa. Our data demonstrate that S. epidermidis-regulated Serpine1 suppresses the invasion of influenza virus through suppression of airway serine protease at the level of nasal mucosa and impedes IAV spread to the respiratory tract. Thus, human nasal commensal S. epidermidis represents a therapeutic potential for treating respiratory viral infections via the change of cellular environment in respiratory tract.

Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1176-1183 ◽  
Author(s):  
Najib El Haddad ◽  
Dean Heathcote ◽  
Robert Moore ◽  
Sunmi Yang ◽  
Jamil Azzi ◽  
...  

Abstract Clinical trials using mesenchymal stem cells (MSCs) have been initiated worldwide. An improved understanding of the mechanisms by which allogeneic MSCs evade host immune responses is paramount to regulating their survival after administration. This study has focused on the novel role of serine protease inhibitor (SPI) in the escape of MSCs from host immunosurveillance through the inhibition of granzyme B (GrB). Our data indicate bone marrow–derived murine MSCs express SPI6 constitutively. MSCs from mice deficient for SPI6 (SPI6−/−) exhibited a 4-fold higher death rate by primed allogeneic cytotoxic T cells than did wild-type MSCs. A GrB inhibitor rescued SPI6−/− MSCs from cytotoxic T-cell killing. Transduction of wild-type MSCs with MigR1-SPI6 also protected MSCs from cytotoxic T cell–mediated death in vitro. In addition, SPI6−/− MSCs displayed a shorter lifespan than wild-type MSCs when injected into an allogeneic host. We conclude that SPI6 protects MSCs from GrB-mediated killing and plays a pivotal role in their survival in vivo. Our data could serve as a basis for future SPI-based strategies to regulate the survival and function of MSCs after administration and to enhance the efficacy of MSC-based therapy for diseases.


2014 ◽  
Vol 95 ◽  
pp. 149-156 ◽  
Author(s):  
Maram Morjen ◽  
Stéphane Honoré ◽  
Amine Bazaa ◽  
Zaineb Abdelkafi-Koubaa ◽  
Ameneallah Ellafi ◽  
...  

2012 ◽  
Vol 303 (7) ◽  
pp. F939-F943 ◽  
Author(s):  
Kohei Uchimura ◽  
Yutaka Kakizoe ◽  
Tomoaki Onoue ◽  
Manabu Hayata ◽  
Jun Morinaga ◽  
...  

Aldosterone plays an important role in the regulation of blood pressure by modulating the activity of the epithelial sodium channel (ENaC) that consists of α-, β-, and γ-subunits. Aldosterone induces a molecular weight shift of γENaC from 85 to 70 kDa that is necessary for the channel activation. In vitro experiments demonstrated that a dual cleavage mechanism is responsible for this shift. It has been postulated that furin executes the primary cleavage in the Golgi and that the second cleavage is provided by other serine proteases such as prostasin or plasmin at the plasma membrane. However, the in vivo contribution of serine proteases to this cleavage remains unclear. To address this issue, we administered the synthetic serine protease inhibitor camostat mesilate (CM) to aldosterone-infused rats. CM decreased the abundance of the 70-kDa form of ENaC and led to a new 75-kDa form with a concomitant increase in the urinary Na-to-K ratio. Because CM inhibits the protease activity of serine proteases such as prostasin and plasmin, but not furin, our findings strongly indicate that CM inhibited the second cleavage of γENaC and subsequently suppressed ENaC activity. The results of our current studies also suggest the possibility that the synthetic serine protease inhibitor CM might represent a new strategy for the treatment of salt-sensitive hypertension in humans.


2021 ◽  
Author(s):  
Or Alfi ◽  
Arkadi Yakirevitch ◽  
Ori Wald ◽  
Ori Wandel ◽  
Uzi Izhar ◽  
...  

ABSTRACTThe nasal-mucosa constitutes the primary entry site for respiratory viruses including SARS-CoV-2. While the imbalanced innate immune response of end-stage COVID-19 has been extensively studied, the earliest stages of SARS-CoV-2 infection at the mucosal entry site have remained unexplored. Here we employed SARS-CoV-2 and influenza virus infection in native multi-cell-type human nasal turbinate and lung tissues ex vivo, coupled with genome-wide transcriptional analysis, to investigate viral susceptibility and early patterns of local-mucosal innate immune response in the authentic milieu of the human respiratory tract. SARS-CoV-2 productively infected the nasal turbinate tissues, predominantly targeting respiratory epithelial cells, with rapid increase in tissue-associated viral sub-genomic mRNA, and secretion of infectious viral progeny. Importantly, SARS-CoV-2 infection triggered robust antiviral and inflammatory innate immune responses in the nasal mucosa. The upregulation of interferon stimulated genes, cytokines and chemokines, related to interferon signaling and immune-cell activation pathways, was broader than that triggered by influenza virus infection. Conversely, lung tissues exhibited a restricted innate immune response to SARS-CoV-2, with a conspicuous lack of type I and III interferon upregulation, contrasting with their vigorous innate immune response to influenza virus. Our findings reveal differential tissue-specific innate immune responses in the upper and lower respiratory tract, that are distinct to SARS-CoV-2. The studies shed light on the role of the nasal-mucosa in active viral transmission and immune defense, implying a window of opportunity for early interventions, whereas the restricted innate immune response in early-SARS-CoV-2-infected lung tissues could underlie the unique uncontrolled late-phase lung damage of advanced COVID-19.IMPORTANCEIn order to reduce the late-phase morbidity and mortality of COVID-19, there is a need to better understand and target the earliest stages of SARS-CoV-2 infection in the human respiratory tract. Here we have studied the initial steps of SARS-CoV-2 infection and the consequent innate immune responses within the natural multicellular complexity of human nasal-mucosal and lung tissues. Comparing the global innate response patterns of nasal and lung tissues, infected in parallel with SARS-CoV-2 and influenza virus, we have revealed distinct virus-host interactions in the upper and lower respiratory tract, which could determine the outcome and unique pathogenesis of SARS-CoV-2 infection. Studies in the nasal-mucosal infection model can be employed to assess the impact of viral evolutionary changes, and evaluate new therapeutic and preventive measures against SARS-CoV-2 and other human respiratory pathogens.


2021 ◽  
Author(s):  
Or Alfi ◽  
Arkadi Yakirevitch ◽  
Ori Wald ◽  
Ori Wandel ◽  
Uzi Izhar ◽  
...  

The nasal-mucosa constitutes the primary entry site for respiratory viruses including SARS-CoV-2. While the imbalanced innate immune response of end-stage COVID-19 has been extensively studied, the earliest stages of SARS-CoV-2 infection at the mucosal entry site have remained unexplored. Here we employed SARS-CoV-2 and influenza virus infection in native multi-cell-type human nasal turbinate and lung tissues ex vivo, coupled with genome-wide transcriptional analysis, to investigate viral susceptibility and early patterns of local-mucosal innate immune response in the authentic milieu of the human respiratory tract. SARS-CoV-2 productively infected the nasal turbinate tissues, predominantly targeting respiratory epithelial cells, with rapid increase in tissue-associated viral sub-genomic mRNA, and secretion of infectious viral progeny. Importantly, SARS-CoV-2 infection triggered robust antiviral and inflammatory innate immune responses in the nasal mucosa. The upregulation of interferon stimulated genes, cytokines and chemokines, related to interferon signaling and immune-cell activation pathways, was broader than that triggered by influenza virus infection. Conversely, lung tissues exhibited a restricted innate immune response to SARS-CoV-2, with a conspicuous lack of type I and III interferon upregulation, contrasting with their vigorous innate immune response to influenza virus. Our findings reveal differential tissue-specific innate immune responses in the upper and lower respiratory tract, that are distinct to SARS-CoV-2. The studies shed light on the role of the nasal-mucosa in active viral transmission and immune defense, implying a window of opportunity for early interventions, whereas the restricted innate immune response in early-SARS-CoV-2-infected lung tissues could underlie the unique uncontrolled late-phase lung damage of advanced COVID-19. IMPORTANCE In order to reduce the late-phase morbidity and mortality of COVID-19, there is a need to better understand and target the earliest stages of SARS-CoV-2 infection in the human respiratory tract. Here we have studied the initial steps of SARS-CoV-2 infection and the consequent innate immune responses within the natural multicellular complexity of human nasal-mucosal and lung tissues. Comparing the global innate response patterns of nasal and lung tissues, infected in parallel with SARS-CoV-2 and influenza virus, we have revealed distinct virus-host interactions in the upper and lower respiratory tract, which could determine the outcome and unique pathogenesis of SARS-CoV-2 infection. Studies in the nasal-mucosal infection model can be employed to assess the impact of viral evolutionary changes, and evaluate new therapeutic and preventive measures against SARS-CoV-2 and other human respiratory pathogens.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e48234 ◽  
Author(s):  
Mohammed Asmal ◽  
James B. Whitney ◽  
Corinne Luedemann ◽  
Angela Carville ◽  
Robert Steen ◽  
...  

2020 ◽  
Vol 103 (2) ◽  
pp. 400-410 ◽  
Author(s):  
Brooke E Barton ◽  
Jenna K Rock ◽  
Anna M Willie ◽  
Emily A Harris ◽  
Ryan M Finnerty ◽  
...  

Abstract Inhibition of the sperm transport process in the female reproductive tract could lead to infertility. We previously showed that a pan-serine protease inhibitor, 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), blocked semen liquefaction in vivo and resulted in a drastic decrease in the number of sperm in the oviduct of female mice. In this study, we used a mouse model to test the efficacy of AEBSF as a reversible contraceptive, a sperm motility inhibitor, and a spermicide. Additionally, this study evaluated the toxicity of AEBSF on mouse vaginal tissues in vivo and human endocervical cells in vitro. We found that female mice treated with AEBSF had significantly less pups born per litter as well as fertilization rates in vivo compared to the vehicle control. We then showed that AEBSF reduced sperm motility and fertilization capability in vitro in a dose-dependent manner. Furthermore, AEBSF also exhibited spermicidal effects. Lastly, AEBSF treatment in female mice for 10 min or 3 consecutive days did not alter vaginal cell viability in vivo, similar to that of the vehicle and non-treated controls. However, AEBSF decreased cell viability of human ectocervical (ECT) cell line in vitro, suggesting that cells in the lower reproductive tract in mice and humans responded differently to AEBSF. In summary, our study showed that AEBSF can be used as a prototype compound for the further development of novel non-hormonal contraceptives for women by targeting sperm transport in the female reproductive tract.


Sign in / Sign up

Export Citation Format

Share Document