scholarly journals Single Gyroid and Inverse b.c.c. Photonic Crystals in Bird Feathers

2020 ◽  
Author(s):  
Vinodkumar Saranathan ◽  
Suresh Narayanan ◽  
Alec Sandy ◽  
Eric R. Dufresne ◽  
Richard O. Prum

AbstractVivid, saturated structural colors are a conspicuous and important aspect of the appearance of many organisms. A huge diversity of underlying 3D ordered biophotonic nanostructures has been documented, for instance, within the chitinaceous exoskeletons of insects. Here, we report diverse, highly ordered, intracellular, 3D biophotonic crystals in vivid plumages from three families of birds, which have each evolved independently from quasi-ordered (glassy) ancestral states. These morphologies include exotic bi-continuous single gyroid β-keratin and air networks, inverse b.c.c. and inverse opal (r.h.c.p.) close-packings of air spheres in the medullary β-keratin of feather barbs. These self-assembled avian biophotonic crystals may serve as biomimetic inspiration for advanced multi-functional applications, as they suggest alternative routes to the synthesis of optical-scale photonic crystals, including the experimentally elusive single gyroid.Field CodesMaterials Science and Evolutionary BiologyOne Sentence SummaryEvolutionary disorder-order transitions in bird feathers suggest direct optical scale self-assembly of photonic crystals

2021 ◽  
Vol 118 (23) ◽  
pp. e2101357118
Author(s):  
Vinodkumar Saranathan ◽  
Suresh Narayanan ◽  
Alec Sandy ◽  
Eric R. Dufresne ◽  
Richard O. Prum

Vivid, saturated structural colors are conspicuous and important features of many animals. A rich diversity of three-dimensional periodic photonic nanostructures is found in the chitinaceous exoskeletons of invertebrates. Three-dimensional photonic nanostructures have been described in bird feathers, but they are typically quasi-ordered. Here, we report bicontinuous single gyroid β-keratin and air photonic crystal networks in the feather barbs of blue-winged leafbirds (Chloropsis cochinchinensis sensu lato), which have evolved from ancestral quasi-ordered channel-type nanostructures. Self-assembled avian photonic crystals may serve as inspiration for multifunctional applications, as they suggest efficient, alternative routes to single gyroid synthesis at optical length scales, which has been experimentally elusive.


2019 ◽  
Vol 7 (38) ◽  
pp. 11776-11782 ◽  
Author(s):  
Dongpeng Yang ◽  
Guolong Liao ◽  
Shaoming Huang

Invisible photonic prints that become visible by UV light irradiation were prepared via the self-assembly of Y2O3:Eu colloidal particles into amorphous photonic crystals (APCs) with controlled fluorescent and noniridescent structural colors.


2011 ◽  
Vol 311-313 ◽  
pp. 1217-1221
Author(s):  
Zheng Wen Yang ◽  
Ji Zhou ◽  
Jian Bei Qiu ◽  
Zhi Guo Song ◽  
Da Cheng Zhou ◽  
...  

Inverse opal photonic crystals of Eu3+ doped LaPO4 (LaPO4: Eu)were prepared by a self-assembly technique in combination with a sol-gel method. In the preparation process, Eu3+ doped LaPO4 precursors were filled into the interstices of the opal template assembled by monodispersive polystyrene microspheres. The polystyrene template was then removed by calcination at 650 °C for 5h, meanwhile, Eu3+doped LaPO4 inverse opal photonic crystal was formed. The photoluminescence (PL) from Eu3+ doped LaPO4 inverse opal photonic crystal was studied. The effect of the photonic stop-band on the spontaneous emission of Eu3+ has been observed in the inverse opal photonic crystals of Eu3+ doped LaPO4. Significant suppression of the emission was detected if the photonic band-gap overlaps with the Eu3+ ions emission band.


2019 ◽  
Author(s):  
Mark Workentin ◽  
François Lagugné-Labarthet ◽  
Sidney Legge

In this work we present a clean one-step process for modifying headgroups of self-assembled monolayers (SAMs) on gold using photo-enabled click chemistry. A thiolated, cyclopropenone-caged strained alkyne precursor was first functionalized onto a flat gold substrate through self-assembly. Exposure of the cyclopropenone SAM to UV-A light initiated the efficient photochemical decarbonylation of the cyclopropenone moiety, revealing the strained alkyne capable of undergoing the interfacial strain-promoted alkyne-azide cycloaddition (SPAAC). Irradiated SAMs were derivatized with a series of model azides with varied hydrophobicity to demonstrate the generality of this chemical system for the modification and fine-tuning of the surface chemistry on gold substrates. SAMs were characterized at each step with polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) to confirm successful functionalization and reactivity. Furthermore, to showcase the compatibility of this approach with biochemical applications, cyclopropenone SAMs were irradiated and modified with azide-bearing cell adhesion peptides to promote human fibroblast cell adhesion, then imaged by live cell fluorescence microscopy. Thus, the “photoclick” methodology reported here represents an improved, versatile, catalyst-free protocol that allows for a high degree of control over the modification of material surfaces, with applicability in materials science as well as biochemistry.<br>


Polymer ◽  
2020 ◽  
Vol 194 ◽  
pp. 122389 ◽  
Author(s):  
Tiantian Guo ◽  
Yi Wang ◽  
Yaping Qiao ◽  
Xiaoyan Yuan ◽  
Yunhui Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document