scholarly journals The C-terminal actin binding domain of talin forms an asymmetric catch bond with F-actin

2020 ◽  
Author(s):  
Leanna M. Owen ◽  
Nick A. Bax ◽  
William I. Weis ◽  
Alexander R. Dunn

AbstractFocal adhesions (FAs) are large, integrin-based adhesion complexes that link cells to the extracellular matrix (ECM). Previous work demonstrates that FAs form only when and where they are necessary to transmit force between the cellular cytoskeleton and the ECM, but how this occurs remains poorly understood. Talin is a 270 kDa adapter protein that links integrins to filamentous (F)-actin and recruits additional components during FA assembly in a force-dependent manner. Cell biological and developmental data demonstrate that the third, and C-terminal, F-actin binding site (ABS3) of talin is required for normal FA formation. However, ABS3 binds F-actin only weakly in in vitro, biochemical assays. We used a single-molecule optical trap assay to examine how and whether ABS3 binds F-actin under physiologically relevant, pN mechanical loads. We find that ABS3 forms a directional catch bond with F-actin when force is applied towards the pointed end of the actin filament, with binding lifetimes more than 100-fold longer than when force is applied towards the barbed end. Long-lived bonds to F-actin under load require the ABS3 C-terminal dimerization domain, whose cleavage is known to regulate focal adhesion turnover. Our results support a mechanism in which talin ABS3 preferentially binds and orients actin filaments with barbed ends facing the cell periphery, thus nucleating long-range order in the actin cytoskeleton. We suggest that talin ABS3 may function as a molecular AND gate that allows FA growth only when sufficient integrin density, F-actin polarization, and mechanical tension are simultaneously present.

1991 ◽  
Vol 114 (3) ◽  
pp. 481-491 ◽  
Author(s):  
F M Pavalko ◽  
K Burridge

Alpha-actinin can be proteolytically cleaved into major fragments of 27 and 53 kD using the enzyme thermolysin. The 27-kD fragment contains an actin-binding site and we have recently shown that the 53-kD fragment binds to the cytoplasmic domain of beta 1 integrin in vitro (Otey, C. A., F. M. Pavalko, and K. Burridge. 1990. J. Cell Biol. 111:721-729). We have explored the behavior of the isolated 27- and 53-kD fragments of alpha-actinin after their microinjection into living cells. Consistent with its containing a binding site for actin, the 27-kD fragment was detected along stress fibers within 10-20 min after injection into rat embryo fibroblasts (REF-52). The 53-kD fragment of alpha-actinin, however, concentrated in focal adhesions of REF-52 cells 10-20 min after injection. The association of this fragment with focal adhesions in vivo is consistent with its interaction in vitro with the cytoplasmic domain of the beta 1 subunit of integrin, which was also localized at these sites. When cells were injected with greater than 5 microM final concentration of either alpha-actinin fragment and cultured for 30-60 min, most stress fibers were disassembled. At this time, however, many of the focal adhesions, particularly those around the cell periphery, remained after most stress fibers had gone. By 2 h after injection only a few small focal adhesions persisted, yet the cells remained spread. Identical results were obtained with other cell types including primary chick fibroblasts, BSC-1, MDCK, and gerbil fibroma cells. Stress fibers and focal adhesions reformed if cells were allowed to recover for 18 h after injection. These data suggest that introduction of the monomeric 27-kD fragment of alpha-actinin into cells may disrupt the actin cytoskeleton by interfering with the function of endogenous, intact alpha-actinin molecules along stress fibers. The 53-kD fragment may interfere with endogenous alpha-actinin function at focal adhesions or by displacing some other component that binds to the rod domain of alpha-actinin and that is needed to maintain stress fiber organization.


2020 ◽  
pp. jbc.RA120.015863
Author(s):  
Venukumar Vemula ◽  
Tamás Huber ◽  
Marko Ušaj ◽  
Beáta Bugyi ◽  
Alf Mansson

Actin is a major intracellular protein with key functions in cellular motility, signaling and structural rearrangements. Its dynamic behavior, such as polymerisation and depolymerisation of actin filaments in response to intra- and extracellular cues, is regulated by an abundance of actin binding proteins. Out of these, gelsolin is one of the most potent for filament severing. However, myosin motor activity also fragments actin filaments through motor induced forces, suggesting that these two proteins could cooperate to regulate filament dynamics and motility. To test this idea, we used an in vitro motility assay, where actin filaments are propelled by surface-adsorbed heavy meromyosin (HMM) motor fragments. This allows studies of both motility and filament dynamics using isolated proteins. Gelsolin, at both nanomolar and micromolar Ca2+ concentration, appreciably enhanced actin filament severing caused by HMM-induced forces at 1 mM MgATP, an effect that was increased at higher HMM motor density. This finding is consistent with cooperativity between actin filament severing by myosin-induced forces and by gelsolin. We also observed reduced sliding velocity of the HMM-propelled filaments in the presence of gelsolin, providing further support of myosin-gelsolin cooperativity. Total internal reflection fluorescence microscopy based single molecule studies corroborated that the velocity reduction was a direct effect of gelsolin-binding to the filament and revealed different filament severing pattern of stationary and HMM propelled filaments. Overall, the results corroborate cooperative effects between gelsolin-induced alterations in the actin filaments and changes due to myosin motor activity leading to enhanced F-actin severing of possible physiological relevance.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Pavan Vedula ◽  
Satoshi Kurosaka ◽  
Brittany MacTaggart ◽  
Qin Ni ◽  
Garegin Papoian ◽  
...  

β- and γ-cytoplasmic actins are ubiquitously expressed in every cell type and are nearly identical at the amino acid level but play vastly different roles in vivo. Their essential roles in embryogenesis and mesenchymal cell migration critically depend on the nucleotide sequences of their genes, rather than their amino acid sequence, however it is unclear which gene elements underlie this effect. Here we address the specific role of the coding sequence in β- and γ-cytoplasmic actins' intracellular functions, using stable polyclonal populations of immortalized mouse embryonic fibroblasts with exogenously expressed actin isoforms and their 'codon-switched' variants. When targeted to the cell periphery using the β-actin 3′UTR, β-actin and γ-actin have differential effects on cell migration. These effects directly depend on the coding sequence. Single molecule measurements of actin isoform translation, combined with fluorescence recovery after photobleaching, demonstrate a pronounced difference in β- and γ-actins' translation elongation rates in cells, leading to changes in their dynamics at the focal adhesions, impairments in actin bundle formation, and reduced cell anchoring to the substrate during migration. Our results demonstrate that coding sequence-mediated differences in actin translation play a key role in cell migration.


1999 ◽  
Vol 112 (17) ◽  
pp. 2833-2842 ◽  
Author(s):  
M. Mishima ◽  
E. Nishida

Coronin is a WD repeat-containing actin-binding protein, which was originally identified in the cellular slime mold Dictyostelium. Coronin-null Dictyostelium cells show defects in cytokinesis, cell motility and phagocytosis. Although the existence of coronin in higher eukaryotes has been reported, its function in vertebrate cells has not been elucidated. We cloned a Xenopus homolog of coronin (Xcoronin) and examined its actin-binding properties, subcellular localization and possible functions. Xcoronin consists of 480 amino acids and is 63% identical to human coronin (p57). Bacterially expressed recombinant Xcoronin co-sedimented with F-actin in vitro. The WD repeat domain (residues 64–299) alone did not have any affinity for F-actin. Anti-Xcoronin antibodies reacted specifically with a single 57 kDa protein present in an extract of the Xenopus A6 cell line. Indirect immunofluorescent staining of A6 cells revealed that Xcoronin is present in the cytoplasm and concentrated in the cell periphery in membrane ruffles. During spreading after replating or wound healing after scratching a confluent monolayer, Xcoronin became concentrated in the leading edges of lamellipodia. A GFP-fusion protein of Xcoronin showed a subcellular distribution essentially identical to endogenous Xcoronin. The localization of Xcoronin to the cell periphery was resistant to treatment with 0.1% Triton X-100. The deletion of 63 N-terminal amino acids or of 65 C-terminal amino acids abolished the localization of Xcoronin to the cell periphery. Xcoronin expressed in 3T3 fibroblasts was concentrated to the leading edges of lamellipodia induced by active Rac. Remarkably, expression of a truncated form of Xcoronin (64–299), but not of full-length Xcoronin, significantly decreased the rate of cell spreading after replating and markedly inhibited lamellipodium extension induced by active Rac. These results suggest that Xcoronin plays an important role in lamellipodium extension and cell spreading.


2008 ◽  
Vol 28 (4) ◽  
pp. 195-203 ◽  
Author(s):  
Mechthild M. Schroeter ◽  
Brent Beall ◽  
Hans W. Heid ◽  
Joseph M. Chalovich

An analysis of the primary structure of the actin-binding protein fesselin revealed it to be the avian homologue of mammalian synaptopodin 2 [Schroeter, Beall, Heid, and Chalovich (2008) Biochem. Biophys. Res. Commun. 371, 582–586]. We isolated two synaptopodin 2 isoforms from rabbit stomach that corresponded to known types of human synaptopodin 2. The purification scheme used was that developed for avian fesselin. These synaptopodin 2 forms shared several key functions with fesselin. Both avian fesselin and mammalian synaptopodin 2 bound to Ca2+–calmodulin, α-actinin and smooth-muscle myosin. In addition, both proteins stimulated the polymerization of actin in a Ca2+–calmodulin-dependent manner. Synaptopodin 2 has never before been shown to polymerize actin in the absence of α-actinin, to polymerize actin in a Ca2+–calmodulin-dependent manner, or to bind to Ca2+–calmodulin or myosin. These properties are consistent with the proposed function of synaptopodin 2 in organizing the cytoskeleton.


2020 ◽  
Vol 117 (27) ◽  
pp. 15632-15641
Author(s):  
Brandon M. Bensel ◽  
Michael S. Woody ◽  
Serapion Pyrpassopoulos ◽  
Yale E. Goldman ◽  
Susan P. Gilbert ◽  
...  

KIF3AC is a mammalian neuron-specific kinesin-2 implicated in intracellular cargo transport. It is a heterodimer of KIF3A and KIF3C motor polypeptides which have distinct biochemical and motile properties as engineered homodimers. Single-molecule motility assays show that KIF3AC moves processively along microtubules at a rate faster than expected given the motility rates of the KIF3AA and much slower KIF3CC homodimers. To resolve the stepping kinetics of KIF3A and KIF3C motors in homo- and heterodimeric constructs and determine their transport potential under load, we assayed motor activity using interferometric scattering microscopy and optical trapping. The distribution of stepping durations of KIF3AC molecules is described by a rate (k1= 11 s−1) without apparent kinetic asymmetry. Asymmetry was also not apparent under hindering or assisting mechanical loads in the optical trap. KIF3AC shows increased force sensitivity relative to KIF3AA yet is more capable of stepping against mechanical load than KIF3CC. Interestingly, the behavior of KIF3C mirrors prior studies of kinesins with increased interhead compliance. Microtubule gliding assays containing 1:1 mixtures of KIF3AA and KIF3CC result in speeds similar to KIF3AC, suggesting the homodimers mechanically impact each other’s motility to reproduce the behavior of the heterodimer. Our observations are consistent with a mechanism in which the stepping of KIF3C can be activated by KIF3A in a strain-dependent manner, similar to application of an assisting load. These results suggest that the mechanochemical properties of KIF3AC can be explained by the strain-dependent kinetics of KIF3A and KIF3C.


1987 ◽  
Vol 244 (2) ◽  
pp. 417-425 ◽  
Author(s):  
P K Ngai ◽  
M P Walsh

Caldesmon is a major calmodulin- and actin-binding protein of smooth muscle which interacts with calmodulin in a Ca2+-dependent manner or with actin in a Ca2+-independent manner. Isolated caldesmon is capable of inhibiting the actin-activated Mg2+-ATPase of smooth-muscle myosin, suggesting a possible physiological role for caldesmon in regulating the contractile state of smooth-muscle. Caldesmon can be phosphorylated in vitro by a co-purifying Ca2+/calmodulin-dependent protein kinase and dephosphorylated by a protein phosphatase, both of which are present in smooth muscle. We investigated further the phosphorylation of caldesmon and the effects which phosphorylation has on the functional properties of the protein. The kinetics of caldesmon phosphorylation were similar whether the caldesmon substrate was free or bound to actin, actin/tropomyosin or thin filaments. Caldesmon containing endogenous kinase activity was rapidly phosphorylated (to approx. 1 mol of Pi/mol of caldesmon in 5 min) when reconstituted with actin, myosin, tropomyosin, calmodulin and myosin light-chain kinase in the presence of Ca2+ and MgATP2-. Under conditions in which unphosphorylated caldesmon showed substantial inhibition of the actin-activated myosin Mg2+-ATPase, no inhibition was observed with phosphorylated caldesmon. This was the case whether caldesmon was phosphorylated before addition to the actomyosin Mg2+-ATPase system, or phosphorylation was allowed to take place during the ATPase reaction. Binding studies revealed maximal binding of 1 mol of unphosphorylated caldesmon/9.5 mol of actin and 1 mol of phosphorylated caldesmon/11.7 mol of actin. All the bound phosphorylated caldesmon could be released by Ca2+/calmodulin, with half-maximal release at 0.11 microM-Ca2+, whereas only 62% of the bound unphosphorylated caldesmon could be removed, with half-maximal release at 0.16 microM-Ca2+. However, under conditions in which inhibition of actomyosin Mg2+-ATPase activity by non-phosphorylated but not by phosphorylated caldesmon was observed, both forms of caldesmon would remain bound to the thin filament. These observations suggest a possible mechanism whereby caldesmon phosphorylation may prevent its inhibitory action on the actomyosin Mg2+-ATPase.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3568-3568
Author(s):  
Teresia A. Magnuson-Osborn ◽  
Claes Dahlgren ◽  
John H. Hartwig ◽  
Thomas P. Stossel

Abstract Gelsolin is a highly conserved intracellular actin-binding protein with an extracellular isoform named plasma gelsolin (pGSN). Relatively high (250 mg /L) blood concentrations of pGSN decrease in response to trauma, major surgery, sepsis, burns, ionizing radiation, and hyperoxia. Depletion of pGSN to a critical (~20%) level precedes and predicts complications of primary injuries such as lung permeability changes, ARDS, assisted ventilation and death. Administration of recombinant pGSN ameliorates such complications and reduces mortality in animal models. A proposed mechanism for pGSN’s protective effects is that it inhibits inflammatory mediators generated during primary injuries, since pGSN binds bioactive mediators, including lysophospatidic acid (LPA) and endotoxin in vitro. Because of its structural similarity we hypothesized that plasma gelsolin binds also to the potent lipid mediator platelet activating factor (PAF) and report here on the inhibition of PAF-induced cellular activation. Recombinant pGSN inhibited PAF-induced P-selectin up-regulation by human platelets as measured by flow cytometry. A ten- to 40-fold molar excess (0.5–20 μM) of pGSN over PAF inhibits P-selectin expression by 40 to 80%. The concentrations of plasma gelsolin used approximate the ~2–3 μM concentrations in plasma, and the molar excess of pGSN over PAF is probably greater in biological systems, where PAF has nanomolar affinity for its receptor. pGSN also inhibited PAF-induced superoxide anion (O2-) production (measured by chemiluminescence) of human neutrophils (PMN) in a concentration-dependent manner. The inhibition was up to 80% at a concentration of 10 μM (tenfold molar excess over PAF). A phospholipid-binding peptide derived from pGSN (QRLFQVKGRR) also inhibited PAF-mediated O2- generation by PMN. The inhibition was 65% at a 1:1 molar ratio (1 μM). In conclusion pGSN interferes with PAF-induced cellular activation in vitro, suggesting a mechanism for the protective role of plasma gelsolin that has been observed in vivo.


2002 ◽  
Vol 363 (2) ◽  
pp. 233-242 ◽  
Author(s):  
Michael CURTIS ◽  
Sotiris N. NIKOLOPOULOS ◽  
Christopher E. TURNER

Prior to cell division, normal adherent cells adopt a round morphology that is associated with a loss of actin stress fibres and disassembly of focal adhesions. In this study, we investigate the mitotic phosphorylation of the recently described paxillin and actin-binding focal-adhesion protein actopaxin [Nikolopoulos and Turner (2000) J. Cell Biol. 151, 1435–1448]. Actopaxin is comprised of an N-terminus containing six putative cdc2 phosphorylation sites and a C-terminus consisting of tandem calponin homology domains. Here we show that the N-terminus of actopaxin is phosphorylated by cyclin B1/cdc2 kinase in vitro and that this region of actopaxin precipitates cdc2 kinase activity from mitotic lysates. Actopaxin exhibits reduced electrophoretic mobility during mitosis that is dependent on phosphorylation within the first two consensus cdc2 phosphorylation sites. Finally, as cells progress from mitosis to G1 there is an adhesion-independent dephosphorylation of actopaxin, suggesting that actopaxin dephosphorylation precedes cell spreading and the reformation of focal adhesions. Taken together, these results suggest a role for cyclin B1/cdc2-dependent phosphorylation of actopaxin in regulating actin cytoskeleton reorganization during cell division.


2019 ◽  
Author(s):  
Brandon M. Bensel ◽  
Michael S. Woody ◽  
Serapion Pyrpassopoulos ◽  
Yale E. Goldman ◽  
Susan P. Gilbert ◽  
...  

AbstractKIF3AC is a mammalian neuron-specific kinesin-2 implicated in intracellular cargo transport. It is a heterodimer of KIF3A and KIF3C motor polypeptides which have distinct biochemical and motile properties as engineered homodimers. Single-molecule motility assays show that KIF3AC moves processively along microtubules at a rate faster than expected given the motility rates of the KIF3AA and much slower KIF3CC homodimers. To resolve the stepping kinetics of KIF3A and KIF3C motors in homo-and heterodimeric constructs, and to determine their transport potential under mechanical load, we assayed motor activity using interferometric scattering (iSCAT) microscopy and optical trapping. The distribution of stepping durations of KIF3AC molecules is described by a rate (k1 = 11 s−1) without apparent kinetic asymmetry in stepping. Asymmetry was also not apparent under hindering or assisting mechanical loads of 1 pN in the optical trap. KIF3AC shows increased force sensitivity relative to KIF3AA, yet is more capable of stepping against mechanical load than KIF3CC. Microtubule gliding assays containing 1:1 mixtures of KIF3AA and KIF3CC result in speeds similar to KIF3AC, indicating the homodimers mechanically impact each other’s motility to reproduce the behavior of the heterodimer. We conclude that the stepping of KIF3C can be activated by KIF3A in a strain-dependent manner which is similar to application of an assisting load, and the behavior of KIF3C mirrors prior studies of kinesins with increased interhead compliance. These results suggest that KIF3AC-based cargo transport likely requires multiple motors, and its mechanochemical properties arise due to the strain-dependences of KIF3A and KIF3C.Significance StatementKinesins are important long-range intracellular transporters in neurons required by the extended length of the axon and dendrites and selective cargo transport to each. The mammalian kinesin-2, KIF3AC, is a neuronal heterodimer of fast and slow motor polypeptides. Our results show that KIF3AC has a single observed stepping rate in the presence and absence of load and detaches from the microtubule rapidly under load. Interestingly, both KIF3A and assisting loads accelerate the kinetics of KIF3C. These results suggest that KIF3AC is an unconventional cargo transporter and its motile properties do not represent a combination of alternating fast and slow step kinetics. We demonstrate that the motile properties of KIF3AC represent a mechanochemistry that is specific to KIF3AC and may provide functional advantages in neurons.


Sign in / Sign up

Export Citation Format

Share Document