scholarly journals Distinct clonal evolution of B-cells in HIV controllers with neutralizing antibody breadth

2020 ◽  
Author(s):  
Deniz Cizmeci ◽  
Giuseppe Lofano ◽  
Anne-Sophie Dugast ◽  
Dongkyoon Kim ◽  
Guy Cavet ◽  
...  

AbstractA minor subset of individuals infected with HIV-1 develop antibody neutralization breadth during the natural course of the infection, often linked to chronic, high level viremia. Despite significant efforts, vaccination strategies have been unable to induce similar neutralization breadth and the mechanisms underlying neutralizing antibody induction remain largely elusive. Broadly neutralizing antibody responses can also be found in individuals who control HIV to low and even undetectable plasma levels in the absence of antiretroviral therapy, suggesting that high antigen exposure is not a strict requirement for neutralization breadth. We therefore performed an analysis of paired heavy and light chain B-cell receptor repertoires in 12,591 HIV-1 Envelope-specific single memory B-cells to determine alterations in the BCR immunoglobulin gene repertoire and B-cell clonal expansions that associate with neutralizing antibody breadth in 22 HIV controllers. We found that the frequency of genomic mutations in IGHV and IGLV was directly correlated with serum neutralization breadth. The repertoire of the most mutated antibodies was dominated by a small number of large clones with evolutionary signatures suggesting that these clones had reached peak affinity maturation. These data demonstrate that even in the setting of low plasma HIV antigenemia, similar to what a vaccine can potentially achieve, BCR selection for extended somatic hypermutation and clonal evolution can occur in some individuals suggesting that host-specific factors might be involved that could be targeted with future vaccine strategies.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Deniz Cizmeci ◽  
Giuseppe Lofano ◽  
Evan Rossignol ◽  
Anne-Sophie Dugast ◽  
Dongkyoon Kim ◽  
...  

A minor subset of individuals infected with HIV-1 develop antibody neutralization breadth during the natural course of the infection, often linked to chronic, high-level viremia. Despite significant efforts, vaccination strategies have been unable to induce similar neutralization breadth and the mechanisms underlying neutralizing antibody induction remain largely elusive. Broadly neutralizing antibody responses can also be found in individuals who control HIV to low and even undetectable plasma levels in the absence of antiretroviral therapy, suggesting that high antigen exposure is not a strict requirement for neutralization breadth. We therefore performed an analysis of paired heavy and light chain B-cell receptor (BCR) repertoires in 12,591 HIV-1 envelope-specific single memory B-cells to determine alterations in the BCR immunoglobulin gene repertoire and B-cell clonal expansions that associate with neutralizing antibody breadth in 22 HIV controllers. We found that the frequency of genomic mutations in IGHV and IGLV was directly correlated with serum neutralization breadth. The repertoire of the most mutated antibodies was dominated by a small number of large clones with evolutionary signatures suggesting that these clones had reached peak affinity maturation. These data demonstrate that even in the setting of low plasma HIV antigenemia, similar to what a vaccine can potentially achieve, BCR selection for extended somatic hypermutation and clonal evolution can occur in some individuals suggesting that host-specific factors might be involved that could be targeted with future vaccine strategies.


2020 ◽  
Vol 117 (14) ◽  
pp. 7929-7940
Author(s):  
Ming Tian ◽  
Kelly McGovern ◽  
Hwei-Ling Cheng ◽  
Peyton Waddicor ◽  
Lisa Rieble ◽  
...  

HIV-1 vaccine development aims to elicit broadly neutralizing antibodies (bnAbs) against diverse viral strains. In some HIV-1–infected individuals, bnAbs evolved from precursor antibodies through affinity maturation. To induce bnAbs, a vaccine must mediate a similar antibody maturation process. One way to test a vaccine is to immunize mouse models that express human bnAb precursors and assess whether the vaccine can convert precursor antibodies into bnAbs. A major problem with such mouse models is that bnAb expression often hinders B cell development. Such developmental blocks may be attributed to the unusual properties of bnAb variable regions, such as poly-reactivity and long antigen-binding loops, which are usually under negative selection during primary B cell development. To address this problem, we devised a method to circumvent such B cell developmental blocks by expressing bnAbs conditionally in mature B cells. We validated this method by expressing the unmutated common ancestor (UCA) of the human VRC26 bnAb in transgenic mice. Constitutive expression of the VRC26UCA led to developmental arrest of B cell progenitors in bone marrow; poly-reactivity of the VRC26UCA and poor pairing of the VRC26UCA heavy chain with the mouse surrogate light chain may contribute to this phenotype. The conditional expression strategy bypassed the impediment to VRC26UCA B cell development, enabling the expression of VRC26UCA in mature B cells. This approach should be generally applicable for expressing other bnAbs that are under negative selection during B cell development.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3248-3248
Author(s):  
Sridhar Chaganti ◽  
Noelia Begue Pastor ◽  
Mark T. Drayson ◽  
Andy I. Bell ◽  
Alan B. Rickinson

Abstract Somatic hypermutation of immunoglobulin (Ig) gene sequences in the germinal centres of lymphoid tissues is necessary for affinity maturation of B cell responses to antigen challenge. This process generates a few clones with improved affinity that are selected into B cell memory and many clones with other non favourable Ig mutations, including some cells with functionally inactivated Ig gene that normally die by apoptosis. It is postulated that infection with Epstein-Barr virus (EBV), a B lymphotropic agent linked to several types of B cell lymphoma, can rescue germinal centre cells with unfavourable mutations. This creates a pool of infected cells at greater risk of developing into lymphomas. In the present work, CD38+ germinal centre B cells were separated from tonsil by negative selection for IgD and CD39. Peripheral blood naïve and memory B cell subpopulations were FACS sorted as IgD+, CD27− and IgD−, CD27+ fractions respectively. These cells were infected with EBV (B95.8 strain) in vitro and seeded at limiting dilutions onto fibroblast feeders. EBV transformed lymphoblastoid cell lines (LCLs) from such cultures were analysed for surface Ig phenotype. Naïve B cell transformants were consistently IgM+, IgD+. Memory B cell transformants were IgM+ in some cases but more frequently IgG+ or IgA+. Germinal centre transformants showed the same spectrum of surface Ig phenotypes as memory cell transformants but in addition we identified six germinal centre derived LCLs which were consistently surface Ig negative. Sequencing from these lines confirmed that in at least three cases EBV had rescued cells with functionally inactivated Ig heavy chain gene.


2018 ◽  
Author(s):  
James E. Voss ◽  
Alicia Gonzalez-Martin ◽  
Raiees Andrabi ◽  
Roberta P. Fuller ◽  
Ben Murrell ◽  
...  

We have developed a method to introduce novel paratopes into the human antibody repertoire by modifying the immunoglobulin genes of mature B cells directly using genome editing technologies. We used CRISPR-Cas9 in a homology directed repair strategy, to replace the heavy chain (HC) variable region in B cell lines with that from an HIV broadly neutralizing antibody, PG9. Our strategy is designed to function in cells that have undergone VDJ recombination using any combination of variable (V), diversity (D) and joining (J) genes. The modified locus expresses PG9 HC which pairs with native light chains resulting in the cell surface expression of HIV specific B cell receptors (BCRs). Endogenous activation-induced cytidine deaminase (AID) in engineered cells allowed for Ig class switching and generated BCR variants with improved anti-HIV neutralizing activity. Thus, BCRs engineered in this way retain the genetic flexibility normally required for affinity maturation during adaptive immune responses.


Author(s):  
Yanan Li ◽  
Anshuman Bhanja ◽  
Arpita Upadhyaya ◽  
Xiaodong Zhao ◽  
Wenxia Song

B-cells undergo somatic hypermutation and affinity maturation in germinal centers. Somatic hypermutated germinal center B-cells (GCBs) compete to engage with and capture antigens on follicular dendritic cells. Recent studies show that when encountering membrane antigens, GCBs generate actin-rich pod-like structures with B-cell receptor (BCR) microclusters to facilitate affinity discrimination. While deficiencies in actin regulators, including the Wiskott-Aldrich syndrome protein (WASp), cause B-cell affinity maturation defects, the mechanism by which actin regulates BCR signaling in GBCs is not fully understood. Using WASp knockout (WKO) mice that express Lifeact-GFP and live-cell total internal reflection fluorescence imaging, this study examined the role of WASp-mediated branched actin polymerization in the GCB immunological synapse. After rapid spreading on antigen-coated planar lipid bilayers, GCBs formed microclusters of phosphorylated BCRs and proximal signaling molecules at the center and the outer edge of the contact zone. The centralized signaling clusters localized at actin-rich GCB membrane protrusions. WKO reduced the centralized micro-signaling clusters by decreasing the number and stability of F-actin foci supporting GCB membrane protrusions. The actin structures that support the spreading membrane also appeared less frequently and regularly in WKO than in WT GCBs, which led to reductions in both the level and rate of GCB spreading and antigen gathering. Our results reveal essential roles for WASp in the generation and maintenance of unique structures for GCB immunological synapses.


Blood ◽  
2003 ◽  
Vol 102 (4) ◽  
pp. 1421-1427 ◽  
Author(s):  
Caroline Le Morvan ◽  
Eric Pinaud ◽  
Catherine Decourt ◽  
Armelle Cuvillier ◽  
Michel Cogné

Abstract The more distal enhancers of the immunoglobulin heavy-chain 3′ regulatory region, hs3b and hs4, were recently demonstrated as master control elements of germline transcription and class switch recombination to most immunoglobulin constant genes. In addition, they were shown to enhance the accumulation of somatic mutations on linked transgenes. Since somatic hypermutation and class switch recombination are tightly linked processes, their common dependency on the endogenous locus 3′ enhancers could be an attractive hypothesis. VDJ structure and somatic hypermutation were analyzed in B cells from mice carrying either a heterozygous or a homozygous deletion of these enhancers. We find that hs3b and hs4 are dispensable both for VDJ assembly and for the occurrence of mutations at a physiologic frequency in the endogenous locus. In addition, we show that cells functionally expressing the immunoglobulin M (IgM) class B-cell receptor encoded by an hs3b/hs4-deficient locus were fully able to enter germinal centers, undergo affinity maturation, and yield specific antibody responses in homozygous mutant mice, where IgG1 antibodies compensated for the defect in other IgG isotypes. By contrast, analysis of Peyer patches from heterozygous animals showed that peanut agglutinin (PNAhigh) B cells functionally expressing the hs3b/hs4-deficient allele were dramatically outclassed by B cells expressing the wild-type locus and normally switching to IgA. This study thus also highlights the role of germinal centers in the competition between B cells for affinity maturation and suggests that membrane IgA may promote recruitment in an activated B-cell compartment, or proliferation of activated B cells, more efficiently than IgM in Peyer patches.


2015 ◽  
Vol 370 (1676) ◽  
pp. 20140245 ◽  
Author(s):  
Lauren M. Childs ◽  
Edward B. Baskerville ◽  
Sarah Cobey

Pathogens vary in their antigenic complexity. While some pathogens such as measles present a few relatively invariant targets to the immune system, others such as malaria display considerable antigenic diversity. How the immune response copes in the presence of multiple antigens, and whether a trade-off exists between the breadth and efficacy of antibody (Ab)-mediated immune responses, are unsolved problems. We present a theoretical model of affinity maturation of B-cell receptors (BCRs) during a primary infection and examine how variation in the number of accessible antigenic sites alters the Ab repertoire. Naive B cells with randomly generated receptor sequences initiate the germinal centre (GC) reaction. The binding affinity of a BCR to an antigen is quantified via a genotype–phenotype map, based on a random energy landscape, that combines local and distant interactions between residues. In the presence of numerous antigens or epitopes, B-cell clones with different specificities compete for stimulation during rounds of mutation within GCs. We find that the availability of many epitopes reduces the affinity and relative breadth of the Ab repertoire. Despite the stochasticity of somatic hypermutation, patterns of immunodominance are strongly shaped by chance selection of naive B cells with specificities for particular epitopes. Our model provides a mechanistic basis for the diversity of Ab repertoires and the evolutionary advantage of antigenically complex pathogens.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Ashton K. Shiraz ◽  
Eric J. Panther ◽  
Christopher M. Reilly

B lymphocytes play an important role in the pathophysiology of many autoimmune disorders by producing autoantibodies, secreting cytokines, and presenting antigens. B cells undergo extreme physiological changes as they develop and differentiate. Aberrant function in tolerogenic checkpoints and the metabolic state of B cells might be the contributing factors to the dysfunctionality of autoimmune B cells. Understanding B-cell metabolism in autoimmunity is important as it can give rise to new treatments. Recent investigations have revealed that alterations in metabolism occur in the activation of B cells. Several reports have suggested that germinal center (GC) B cells of individuals with systemic lupus erythematosus (SLE) have altered metabolic function. GCs are unique microenvironments in which the delicate and complex process of B-cell affinity maturation occurs through somatic hypermutation (SHM) and class switching recombination (CSR) and where Bcl6 tightly regulates B-cell differentiation into memory B-cells or plasma cells. GC B cells rely heavily on glucose, fatty acids, and oxidative phosphorylation (OXPHOS) for their energy requirements. However, the complicated association between GC B cells and their metabolism is still not clearly understood. Here, we review several studies of B-cell metabolism, highlighting the significant transformations that occur in GC progression, and suggest possible approaches that may be investigated to more precisely target aberrant B-cell metabolism in SLE.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2433-2442 ◽  
Author(s):  
Martin Ivanovski ◽  
Federico Silvestri ◽  
Gabriele Pozzato ◽  
Shubha Anand ◽  
Cesare Mazzaro ◽  
...  

Abstract A high prevalence of chronic hepatitis C virus (HCV) infection has recently been shown in a subset of B-cell non-Hodgkin's lymphomas, most of which belong to the lymphoplasmacytoid lymphoma/immunocytoma subtype and are characterized by the production of a monoclonal IgM cryoglobulin with rheumatoid factor activity. To better define the stage of differentiation of the malignant B cell and to investigate the role of chronic antigen stimulation in the pathogenesis of the HCV-associated immunocytomas, we analyzed the variable (V) region gene repertoire in 16 cases with this type of tumor. The lymphoma-derived V gene sequences were successfully determined in 8 cases; 5 of them expressed the 51p1 VH gene in combination with the kv325 VL gene. Moreover, a monoclonal 51p1-expressing B-cell population was detected in 4 of the remaining immunocytomas by an allele-specific Ig gene fingerprinting assay, indicating that HCV-associated immunocytomas represent clonal proliferations of a highly selected B-cell population. Somatic mutations and intraclonal diversity were observed in all of the lymphoma V genes, and clonally related IgM and IgG VH transcripts indicative of isotype switching were present in one case. These findings are consistent with an antigen-driven process and support a role for chronic antigen stimulation in the growth and clonal evolution of HCV-associated immunocytomas.


Sign in / Sign up

Export Citation Format

Share Document