scholarly journals CHARTS: A web application for characterizing and comparing tumor subpopulations in publicly available single-cell RNA-seq datasets

2020 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zijian Ni ◽  
Michael Collins ◽  
Mark E. Burkard ◽  
Christina Kendziorski ◽  
...  

AbstractBackgroundSingle-cell RNA-seq (scRNA-seq) enables the profiling of genome-wide gene expression at the single-cell level and in so doing facilitates insight into and information about cellular heterogeneity within a tissue. Perhaps nowhere is this more important than in cancer, where tumor and tumor microenvironment heterogeneity directly impact development, maintenance, and progression of disease. While publicly available scRNA-seq cancer datasets offer unprecedented opportunity to better understand the mechanisms underlying tumor progression, metastasis, drug resistance, and immune evasion, much of the available information has been underutilized, in part, due to the lack of tools available for aggregating and analysing these data.ResultsWe present CHARacterizing Tumor Subpopulations (CHARTS), a computational pipeline and web application for analyzing, characterizing, and integrating publicly available scRNA-seq cancer datasets. CHARTS enables the exploration of individual gene expression, cell type, malignancy-status, differentially expressed genes, and gene set enrichment results in subpopulations of cells across multiple tumors and datasets.ConclusionCHARTS is an easy to use, comprehensive platform for exploring single-cell subpopulations within tumors across the ever-growing collection of public scRNA-seq cancer datasets. CHARTS is freely available at charts.morgridge.org.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zijian Ni ◽  
Michael Collins ◽  
Mark E. Burkard ◽  
Christina Kendziorski ◽  
...  

Abstract Background Single-cell RNA-seq (scRNA-seq) enables the profiling of genome-wide gene expression at the single-cell level and in so doing facilitates insight into and information about cellular heterogeneity within a tissue. This is especially important in cancer, where tumor and tumor microenvironment heterogeneity directly impact development, maintenance, and progression of disease. While publicly available scRNA-seq cancer data sets offer unprecedented opportunity to better understand the mechanisms underlying tumor progression, metastasis, drug resistance, and immune evasion, much of the available information has been underutilized, in part, due to the lack of tools available for aggregating and analysing these data. Results We present CHARacterizing Tumor Subpopulations (CHARTS), a web application for exploring publicly available scRNA-seq cancer data sets in the NCBI’s Gene Expression Omnibus. More specifically, CHARTS enables the exploration of individual gene expression, cell type, malignancy-status, differentially expressed genes, and gene set enrichment results in subpopulations of cells across tumors and data sets. Along with the web application, we also make available the backend computational pipeline that was used to produce the analyses that are available for exploration in the web application. Conclusion CHARTS is an easy to use, comprehensive platform for exploring single-cell subpopulations within tumors across the ever-growing collection of public scRNA-seq cancer data sets. CHARTS is freely available at charts.morgridge.org.


2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background: CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear. Results: We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions: To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2020 ◽  
Author(s):  
Verboom Karen ◽  
Alemu T Assefa ◽  
Nurten Yigit ◽  
Jasper Anckaert ◽  
Niels Vandamme ◽  
...  

ABSTRACTTechnological advances in transcriptome sequencing of single cells continues to provide an unprecedented view on tissue composition and cellular heterogeneity. While several studies have compared different single cell RNA-seq methods with respect to data quality and their ability to distinguish cell subpopulations, none of these studies investigated the heterogeneity of the cellular transcriptional response upon a chemical perturbation. In this study, we evaluated the transcriptional response of NGP neuroblastoma cells upon nutlin-3 treatment using the C1, ddSeq and Chromium single cell systems. These devices and library preparation methods are representative for the wide variety of platforms, ranging from microfluid chips to droplet-based systems and from full transcript sequencing to 3-prime end sequencing. In parallel, we used bulk RNA-seq for molecular characterization of the transcriptional response. Two complementary metrics to evaluate performance were applied: the first is the number and identity of differentially expressed genes as defined in consensus by two statistical models, and the second is the enrichment analysis of biological signals. Where relevant, to make the data more comparable, we downsampled sequencing library size, selected cell subpopulations based on specific RNA abundance features, or created pseudobulk samples. While the C1 detects the highest number of genes per cell and better resembles bulk RNA-seq, the Chromium identifies most differentially expressed genes, albeit still substantially fewer than bulk RNA-seq. Gene set enrichment analyses reveals that detection of a limited set of the most abundant genes in single cell RNA-seq experiments is sufficient for molecular phenotyping. Finally, single cell RNA-seq reveals a heterogeneous response of NGP neuroblastoma cells upon nutlin-3 treatment, revealing putative late-responder or resistant cells, both undetected in bulk RNA-seq experiments.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation remains unclear. Results We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating that gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, implying tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explains why knockdown of CTCF leads to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found that cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Fengchan Li ◽  
Kunmin Yan ◽  
Lili Wu ◽  
Zhong Zheng ◽  
Yun Du ◽  
...  

AbstractDisturbed blood flow (d-flow) has been known to induce changes of the cells in the arterial wall, increasing the risk of atherosclerosis. However, the heterogeneity of the vascular cell populations under d-flow remains less understood. To generate d-flow in vivo, partial carotid artery ligation (PCL) was performed. Seven days after ligation, single-cell RNA sequencing of nine left carotid arteries (LCA) from the PCL group (10,262 cells) or control group (14,580 cells) was applied and a single-cell atlas of gene expression was constructed. The integrated analysis identified 15 distinct carotid cell clusters, including 10 d-flow-relevant subpopulations. Among endothelial cells, at least four subpopulations were identified, including Klk8hi ECs, Lrp1hi ECs, Dkk2hi ECs, and Cd36hi ECs. Analysis of GSVA and single-cell trajectories indicated that the previously undescribed Dkk2hi ECs subpopulation was mechanosensitive and potentially transformed from Klk8hi ECs under d-flow. D-flow-induced Spp1hi VSMCs subpopulation that appeared to be endowed with osteoblast differentiation, suggesting a role in arterial stiffness. Among the infiltrating cell subpopulations, Trem2hi Mφ, Birc5hi Mφ, DCs, CD4+ T cells, CXCR6+ T cells, NK cells, and granulocytes were identified under d-flow. Of note, the novel Birc5hi Mφ was identified as a potential contributor to the accumulation of macrophages in atherosclerosis. Finally, Dkk2hi ECs, and Cd36hi ECs were also found in the proatherosclerotic area of the aorta where the d-flow occurs. In conclusion, we presented a comprehensive single-cell atlas of all cells in the carotid artery under d-flow, identified previously unrecognized cell subpopulations and their gene expression signatures, and suggested their specialized functions.


2020 ◽  
Author(s):  
Lin Li ◽  
Hao Dai ◽  
Zhaoyuan Fang ◽  
Luonan Chen

AbstractThe rapid advancement of single cell technologies has shed new light on the complex mechanisms of cellular heterogeneity. However, compared with bulk RNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq) suffers from higher noise and lower coverage, which brings new computational difficulties. Based on statistical independence, cell-specific network (CSN) is able to quantify the overall associations between genes for each cell, yet suffering from a problem of overestimation related to indirect effects. To overcome this problem, we propose the “conditional cell-specific network” (CCSN) method, which can measure the direct associations between genes by eliminating the indirect associations. CCSN can be used for cell clustering and dimension reduction on a network basis of single cells. Intuitively, each CCSN can be viewed as the transformation from less “reliable” gene expression to more “reliable” gene-gene associations in a cell. Based on CCSN, we further design network flow entropy (NFE) to estimate the differentiation potency of a single cell. A number of scRNA-seq datasets were used to demonstrate the advantages of our approach: (1) one direct association network for one cell; (2) most existing scRNA-seq methods designed for gene expression matrices are also applicable to CCSN-transformed degree matrices; (3) CCSN-based NFE helps resolving the direction of differentiation trajectories by quantifying the potency of each cell. CCSN is publicly available at http://sysbio.sibcb.ac.cn/cb/chenlab/soft/CCSN.zip.


2017 ◽  
Author(s):  
Mohan T. Bolisetty ◽  
Michael L. Stitzel ◽  
Paul Robson

Advances in high-throughput single cell transcriptomics technologies have revolutionized the study of complex tissues. It is now possible to measure gene expression across thousands of individual cells to define cell types and states. While powerful computational and statistical frameworks are emerging to analyze these complex datasets, a gap exists between this data and a biologist’s insight. The CellView web application fills this gap by providing easy and intuitive exploration of single cell transcriptome data.


2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

AbstractBackgroundCCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear.ResultsWe knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes.ConclusionsTo our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2020 ◽  
Author(s):  
Yipeng Gao ◽  
Lei Li ◽  
Christopher I. Amos ◽  
Wei Li

AbstractAlternative polyadenylation (APA) is a major mechanism of post-transcriptional regulation in various cellular processes including cell proliferation and differentiation, but the APA heterogeneity among single cells remains largely unknown. Single-cell RNA sequencing (scRNA-seq) has been extensively used to define cell subpopulations at the transcription level. Yet, most scRNA-seq data have not been analyzed in an “APA-aware” manner. Here, we introduce scDaPars, a bioinformatics algorithm to accurately quantify APA events at both single-cell and single-gene resolution using standard scRNA-seq data. Validations in both real and simulated data indicate that scDaPars can robustly recover missing APA events caused by the low amounts of mRNA sequenced in single cells. When applied to cancer and human endoderm differentiation data, scDaPars not only revealed cell-type-specific APA regulation but also identified cell subpopulations that are otherwise invisible to conventional gene expression analysis. Thus, scDaPars will enable us to understand cellular heterogeneity at the post-transcriptional APA level.


Sign in / Sign up

Export Citation Format

Share Document