scholarly journals A cis-regulatory atlas in maize at single-cell resolution

2020 ◽  
Author(s):  
Alexandre P. Marand ◽  
Zongliang Chen ◽  
Andrea Gallavotti ◽  
Robert J. Schmitz

ABSTRACTCis-regulatory elements (CREs) encode the genomic blueprints for coordinating spatiotemporal gene expression programs underlying highly specialized cell functions. To identify CREs underlying cell-type specification and developmental transitions, we implemented single-cell sequencing of Assay for Transposase Accessible Chromatin in an atlas of Zea mays organs. We describe 92 distinct states of chromatin accessibility across more than 165,913 putative CREs, 56,575 cells, and 52 known cell-types in maize using a novel implementation of regularized quasibinomial logistic regression. Cell states were largely determined by combinatorial accessibility of transcription factors (TFs) and their binding sites. A neural network revealed that cell identity could be accurately predicted (>0.94) solely based on TF binding site accessibility. Co-accessible chromatin recapitulated higher-order chromatin interactions, with distinct sets of TFs coordinating cell type-specific regulatory dynamics. Pseudotime reconstruction and alignment with Arabidopsis thaliana trajectories identified conserved TFs, associated motifs, and cis-regulatory regions specifying sequential developmental progressions. Cell-type specific accessible chromatin regions were enriched with phenotype-associated genetic variants and signatures of selection, revealing the major cell-types and putative CREs targeted by modern maize breeding. Collectively, our analysis affords a comprehensive framework for understanding cellular heterogeneity, evolution, and cis-regulatory grammar of cell-type specification in a major crop species.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rongxin Fang ◽  
Sebastian Preissl ◽  
Yang Li ◽  
Xiaomeng Hou ◽  
Jacinta Lucero ◽  
...  

AbstractIdentification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.


2018 ◽  
Author(s):  
Xuran Wang ◽  
Jihwan Park ◽  
Katalin Susztak ◽  
Nancy R. Zhang ◽  
Mingyao Li

AbstractWe present MuSiC, a method that utilizes cell-type specific gene expression from single-cell RNA sequencing (RNA-seq) data to characterize cell type compositions from bulk RNA-seq data in complex tissues. When applied to pancreatic islet and whole kidney expression data in human, mouse, and rats, MuSiC outperformed existing methods, especially for tissues with closely related cell types. MuSiC enables characterization of cellular heterogeneity of complex tissues for identification of disease mechanisms.


2021 ◽  
Author(s):  
Jinyue Liao ◽  
Hoi Ching Suen ◽  
Shitao Rao ◽  
Alfred Chun Shui Luk ◽  
Ruoyu Zhang ◽  
...  

AbstractSpermatogenesis depends on an orchestrated series of developing events in germ cells and full maturation of the somatic microenvironment. To date, the majority of efforts to study cellular heterogeneity in testis has been focused on single-cell gene expression rather than the chromatin landscape shaping gene expression. To advance our understanding of the regulatory programs underlying testicular cell types, we analyzed single-cell chromatin accessibility profiles in more than 25,000 cells from mouse developing testis. We showed that scATAC-Seq allowed us to deconvolve distinct cell populations and identify cis-regulatory elements (CREs) underlying cell type specification. We identified sets of transcription factors associated with cell type-specific accessibility, revealing novel regulators of cell fate specification and maintenance. Pseudotime reconstruction revealed detailed regulatory dynamics coordinating the sequential developmental progressions of germ cells and somatic cells. This high-resolution data also revealed putative stem cells within the Sertoli and Leydig cell populations. Further, we defined candidate target cell types and genes of several GWAS signals, including those associated with testosterone levels and coronary artery disease. Collectively, our data provide a blueprint of the ‘regulon’ of the mouse male germline and supporting somatic cells.


2017 ◽  
Author(s):  
Sebastian Preissl ◽  
Rongxin Fang ◽  
Yuan Zhao ◽  
Ramya Raviram ◽  
Yanxiao Zhang ◽  
...  

ABSTRACTGenome-wide analysis of chromatin accessibility in primary tissues has uncovered millions of candidate regulatory sequences in the human and mouse genomes1–4. However, the heterogeneity of biological samples used in previous studies has prevented a precise understanding of the dynamic chromatin landscape in specific cell types. Here, we show that analysis of the transposase-accessible-chromatin in single nuclei isolated from frozen tissue samples can resolve cellular heterogeneity and delineate transcriptional regulatory sequences in the constituent cell types. Our strategy is based on a combinatorial barcoding assisted single cell assay for transposase-accessible chromatin5 and is optimized for nuclei from flash-frozen primary tissue samples (snATAC-seq). We used this method to examine the mouse forebrain at seven development stages and in adults. From snATAC-seq profiles of more than 15,000 high quality nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell-types in foetal and adult forebrains. We further define cell-type specific cis regulatory sequences and infer potential master transcriptional regulators of each cell population. Our results demonstrate the feasibility of a general approach for identifying cell-type-specific cis regulatory sequences in heterogeneous tissue samples, and provide a rich resource for understanding forebrain development in mammals.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Liduo Yin ◽  
Yanting Luo ◽  
Xiguang Xu ◽  
Shiyu Wen ◽  
Xiaowei Wu ◽  
...  

Abstract Background Numerous cell types can be identified within plant tissues and animal organs, and the epigenetic modifications underlying such enormous cellular heterogeneity are just beginning to be understood. It remains a challenge to infer cellular composition using DNA methylomes generated for mixed cell populations. Here, we propose a semi-reference-free procedure to perform virtual methylome dissection using the nonnegative matrix factorization (NMF) algorithm. Results In the pipeline that we implemented to predict cell-subtype percentages, putative cell-type-specific methylated (pCSM) loci were first determined according to their DNA methylation patterns in bulk methylomes and clustered into groups based on their correlations in methylation profiles. A representative set of pCSM loci was then chosen to decompose target methylomes into multiple latent DNA methylation components (LMCs). To test the performance of this pipeline, we made use of single-cell brain methylomes to create synthetic methylomes of known cell composition. Compared with highly variable CpG sites, pCSM loci achieved a higher prediction accuracy in the virtual methylome dissection of synthetic methylomes. In addition, pCSM loci were shown to be good predictors of the cell type of the sorted brain cells. The software package developed in this study is available in the GitHub repository (https://github.com/Gavin-Yinld). Conclusions We anticipate that the pipeline implemented in this study will be an innovative and valuable tool for the decoding of cellular heterogeneity.


2021 ◽  
Author(s):  
Dongqing Sun ◽  
Yihan Xiao ◽  
Zhaoyang Liu ◽  
Taiwen Li ◽  
Qiu Wu ◽  
...  

AbstractThe recent advances in spatial transcriptomics have brought unprecedented opportunities to understand the cellular heterogeneity in the spatial context. However, the current limitations of spatial technologies hamper the exploration of cellular localizations and interactions at single-cell level. Here, we present spatial transcriptomics deconvolution by topic modeling (STRIDE), a computational method to decompose cell-types from spatial mixtures by leveraging topic profiles trained from single-cell transcriptomics. STRIDE accurately estimated the cell-type proportions and showed balanced specificity and sensitivity compared to existing methods. We demonstrate STRIDE’s utility by applying it to different spatial platforms and biological systems. Deconvolution by STRIDE not only mapped rare cell-types to spatial locations but also improved the identification of spatial localized genes and domains. Moreover, topics discovered by STRIDE were associated with cell-type-specific functions, and could be further used to integrate successive sections and reconstruct the three-dimensional architecture of tissues. Taken together, STRIDE is a versatile and extensible tool for integrated analysis of spatial and single-cell transcriptomics and is publicly available at https://github.com/DongqingSun96/STRIDE.


2020 ◽  
Vol 52 (11) ◽  
pp. 1798-1808
Author(s):  
Junha Cha ◽  
Insuk Lee

AbstractUnderstanding cellular heterogeneity is the holy grail of biology and medicine. Cells harboring identical genomes show a wide variety of behaviors in multicellular organisms. Genetic circuits underlying cell-type identities will facilitate the understanding of the regulatory programs for differentiation and maintenance of distinct cellular states. Such a cell-type-specific gene network can be inferred from coregulatory patterns across individual cells. Conventional methods of transcriptome profiling using tissue samples provide only average signals of diverse cell types. Therefore, reconstructing gene regulatory networks for a particular cell type is not feasible with tissue-based transcriptome data. Recently, single-cell omics technology has emerged and enabled the capture of the transcriptomic landscape of every individual cell. Although single-cell gene expression studies have already opened up new avenues, network biology using single-cell transcriptome data will further accelerate our understanding of cellular heterogeneity. In this review, we provide an overview of single-cell network biology and summarize recent progress in method development for network inference from single-cell RNA sequencing (scRNA-seq) data. Then, we describe how cell-type-specific gene networks can be utilized to study regulatory programs specific to disease-associated cell types and cellular states. Moreover, with scRNA data, modeling personal or patient-specific gene networks is feasible. Therefore, we also introduce potential applications of single-cell network biology for precision medicine. We envision a rapid paradigm shift toward single-cell network analysis for systems biology in the near future.


2017 ◽  
Author(s):  
Kelsey A. Maher ◽  
Marko Bajic ◽  
Kaisa Kajala ◽  
Mauricio Reynoso ◽  
Germain Pauluzzi ◽  
...  

ABSTRACTThe transcriptional regulatory structure of plant genomes remains poorly defined relative to animals. It is unclear how many cis-regulatory elements exist, where these elements lie relative to promoters, and how these features are conserved across plant species. We employed the Assay for Transposase-Accessible Chromatin (ATAC-seq) in four plant species (Arabidopsis thaliana, Medicago truncatula, Solanum lycopersicum, and Oryza sativa) to delineate open chromatin regions and transcription factor (TF) binding sites across each genome. Despite 10-fold variation in intergenic space among species, the majority of open chromatin regions lie within 3 kb upstream of a transcription start site in all species. We find a common set of four TFs that appear to regulate conserved gene sets in the root tips of all four species, suggesting that TF-gene networks are generally conserved. Comparative ATAC-seq profiling of Arabidopsis root hair and non-hair cell types revealed extensive similarity as well as many cell type-specific differences. Analyzing TF binding sites in differentially accessible regions identified a MYB-driven regulatory module unique to the hair cell, which appears to control both cell fate regulators and abiotic stress responses. Our analyses revealed common regulatory principles among species and shed light on the mechanisms producing cell type-specific transcriptomes during development.


Author(s):  
Ryan S. Ziffra ◽  
Chang N. Kim ◽  
Amy Wilfert ◽  
Tychele N. Turner ◽  
Maximilian Haeussler ◽  
...  

AbstractDynamic changes in chromatin accessibility coincide with important aspects of neuronal differentiation, such as fate specification and arealization and confer cell type-specific associations to neurodevelopmental disorders. However, studies of the epigenomic landscape of the developing human brain have yet to be performed at single-cell resolution. Here, we profiled chromatin accessibility of >75,000 cells from eight distinct areas of developing human forebrain using single cell ATAC-seq (scATACseq). We identified thousands of loci that undergo extensive cell type-specific changes in accessibility during corticogenesis. Chromatin state profiling also reveals novel distinctions between neural progenitor cells from different cortical areas not seen in transcriptomic profiles and suggests a role for retinoic acid signaling in cortical arealization. Comparison of the cell type-specific chromatin landscape of cerebral organoids to primary developing cortex found that organoids establish broad cell type-specific enhancer accessibility patterns similar to the developing cortex, but lack many putative regulatory elements identified in homologous primary cell types. Together, our results reveal the important contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical development.


2018 ◽  
Author(s):  
Xi Chen ◽  
Ricardo J Miragaia ◽  
Kedar Nath Natarajan ◽  
Sarah A Teichmann

AbstractThe assay for transposase-accessible chromatin using sequencing (ATAC-seq) is widely used to identify regulatory regions throughout the genome. However, very few studies have been performed at the single cell level (scATAC-seq) due to technical challenges. Here we developed a simple and robust plate-based scATAC-seq method, combining upfront bulk Tn5 tagging with single-nuclei sorting. We demonstrated that our method worked robustly across various systems, including fresh and cryopreserved cells from primary tissues. By profiling over 3,000 splenocytes, we identify distinct immune cell types and reveal cell type-specific regulatory regions and related transcription factors.


Sign in / Sign up

Export Citation Format

Share Document