scholarly journals A Convolutional Auto-Encoder for Haplotype Assembly and Viral Quasispecies Reconstruction

2020 ◽  
Author(s):  
Ziqi Ke ◽  
Haris Vikalo

AbstractHaplotype assembly and viral quasispecies reconstruction are challenging tasks concerned with analysis of genomic mixtures using sequencing data. High-throughput sequencing technologies generate enormous amounts of short fragments (reads) which essentially oversample components of a mixture; the representation redundancy enables reconstruction of the components (haplotypes, viral strains). The reconstruction problem, known to be NP-hard, boils down to grouping together reads originating from the same component in a mixture. Existing methods struggle to solve this problem with required level of accuracy and low runtimes; the problem is becoming increasingly more challenging as the number and length of the components increase. This paper proposes a read clustering method based on a convolutional auto-encoder designed to first project sequenced fragments to a low-dimensional space and then estimate the probability of the read origin using learned embedded features. The components are reconstructed by finding consensus sequences that agglomerate reads from the same origin. Mini-batch stochastic gradient descent and dimension reduction of reads allow the proposed method to efficiently deal with massive numbers of long reads. Experiments on simulated, semi-experimental and experimental data demonstrate the ability of the proposed method to accurately reconstruct haplotypes and viral quasispecies, often demonstrating superior performance compared to state-of-the-art methods.

Author(s):  
Kristoffer Sahlin ◽  
Marisa Lim ◽  
Stefan Prost

Third generation sequencing technologies, such as Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), have gained popularity over the last years. These platforms can generate millions of long read sequences. This is not only advantageous for genome sequencing projects, but also for amplicon-based high-throughput sequencing experiments, such as DNA barcoding. However, the relatively high error rates associated with these technologies still pose challenges for generating high quality consensus sequences. Here we present NGSpeciesID, a program which can generate highly accurate consensus sequences from long-read amplicon sequencing technologies, including ONT and PacBio. The tool includes clustering of the reads to help filter out contaminants or reads with high error rates and employs polishing strategies specific to the appropriate sequencing platform. We show that NGSpeciesID produces consensus sequences with improved usability by minimizing preprocessing and software installation and scalability by enabling rapid processing of hundreds to thousands of samples, while maintaining similar consensus accuracy as current pipelines


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2006
Author(s):  
Anna Y Budkina ◽  
Elena V Korneenko ◽  
Ivan A Kotov ◽  
Daniil A Kiselev ◽  
Ilya V Artyushin ◽  
...  

According to various estimates, only a small percentage of existing viruses have been discovered, naturally much less being represented in the genomic databases. High-throughput sequencing technologies develop rapidly, empowering large-scale screening of various biological samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to be attributed specific loci for identification. This problem particularly impedes viral screening, due to vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl, for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of the new software by applying it to viral screening of the feces of bats collected in the Moscow region, which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa. The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens. In addition, it was shown that alignment-based methods were unable to identify the taxon for a large proportion of reads, and we additionally applied other approaches, showing that they can further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral databases remains a significant problem in the studies of viral diversity, and therefore necessitates the use of combined approaches, including those based on machine learning methods.


2021 ◽  
pp. 1-12
Author(s):  
JinFang Sheng ◽  
Huaiyu Zuo ◽  
Bin Wang ◽  
Qiong Li

 In a complex network system, the structure of the network is an extremely important element for the analysis of the system, and the study of community detection algorithms is key to exploring the structure of the complex network. Traditional community detection algorithms would represent the network using an adjacency matrix based on observations, which may contain redundant information or noise that interferes with the detection results. In this paper, we propose a community detection algorithm based on density clustering. In order to improve the performance of density clustering, we consider an algorithmic framework for learning the continuous representation of network nodes in a low-dimensional space. The network structure is effectively preserved through network embedding, and density clustering is applied in the embedded low-dimensional space to compute the similarity of nodes in the network, which in turn reveals the implied structure in a given network. Experiments show that the algorithm has superior performance compared to other advanced community detection algorithms for real-world networks in multiple domains as well as synthetic networks, especially when the network data chaos is high.


Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1209-1224 ◽  
Author(s):  
Juho A. J. Kontio ◽  
Mikko J. Sillanpää

Gaussian process (GP)-based automatic relevance determination (ARD) is known to be an efficient technique for identifying determinants of gene-by-gene interactions important to trait variation. However, the estimation of GP models is feasible only for low-dimensional datasets (∼200 variables), which severely limits application of the GP-based ARD method for high-throughput sequencing data. In this paper, we provide a nonparametric prescreening method that preserves virtually all the major benefits of the GP-based ARD method and extends its scalability to the typical high-dimensional datasets used in practice. In several simulated test scenarios, the proposed method compared favorably with existing nonparametric dimension reduction/prescreening methods suitable for higher-order interaction searches. As a real-data example, the proposed method was applied to a high-throughput dataset downloaded from the cancer genome atlas (TCGA) with measured expression levels of 16,976 genes (after preprocessing) from patients diagnosed with acute myeloid leukemia.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hui Liu ◽  
Tinglong Tang ◽  
Jake Luo ◽  
Meng Zhao ◽  
Baole Zheng ◽  
...  

Purpose This study aims to address the challenge of training a detection model for the robot to detect the abnormal samples in the industrial environment, while abnormal patterns are very rare under this condition. Design/methodology/approach The authors propose a new model with double encoder–decoder (DED) generative adversarial networks to detect anomalies when the model is trained without any abnormal patterns. The DED approach is used to map high-dimensional input images to a low-dimensional space, through which the latent variables are obtained. Minimizing the change in the latent variables during the training process helps the model learn the data distribution. Anomaly detection is achieved by calculating the distance between two low-dimensional vectors obtained from two encoders. Findings The proposed method has better accuracy and F1 score when compared with traditional anomaly detection models. Originality/value A new architecture with a DED pipeline is designed to capture the distribution of images in the training process so that anomalous samples are accurately identified. A new weight function is introduced to control the proportion of losses in the encoding reconstruction and adversarial phases to achieve better results. An anomaly detection model is proposed to achieve superior performance against prior state-of-the-art approaches.


2020 ◽  
Author(s):  
Marius Welzel ◽  
Anja Lange ◽  
Dominik Heider ◽  
Michael Schwarz ◽  
Bernd Freisleben ◽  
...  

AbstractSequencing of marker genes amplified from environmental samples, known as amplicon sequencing, allows us to resolve some of the hidden diversity and elucidate evolutionary relationships and ecological processes among complex microbial communities. The analysis of large numbers of samples at high sequencing depths generated by high throughput sequencing technologies requires effcient, flexible, and reproducible bioinformatics pipelines. Only a few existing workflows can be run in a user-friendly, scalable, and reproducible manner on different computing devices using an effcient workflow management system. We present Natrix, an open-source bioinformatics workflow for preprocessing raw amplicon sequencing data. The workflow contains all analysis steps from quality assessment, read assembly, dereplication, chimera detection, split-sample merging, sequence representative assignment (OTUs or ASVs) to the taxonomic assignment of sequence representatives. The workflow is written using Snakemake, a workflow management engine for developing data analysis workflows. In addition, Conda is used for version control. Thus, Snakemake ensures reproducibility and Conda offers version control of the utilized programs. The encapsulation of rules and their dependencies support hassle-free sharing of rules between workflows and easy adaptation and extension of existing workflows. Natrix is freely available on GitHub (https://github.com/MW55/Natrix).


2021 ◽  
Author(s):  
Dongshunyi Li ◽  
Jun Ding ◽  
Ziv Bar-Joseph

One of the first steps in the analysis of single cell RNA-Sequencing data (scRNA-Seq) is the assignment of cell types. While a number of supervised methods have been developed for this, in most cases such assignment is performed by first clustering cells in low-dimensional space and then assigning cell types to different clusters. To overcome noise and to improve cell type assignments we developed UNIFAN, a neural network method that simultaneously clusters and annotates cells using known gene sets. UNIFAN combines both, low dimension representation for all genes and cell specific gene set activity scores to determine the clustering. We applied UNIFAN to human and mouse scRNA-Seq datasets from several different organs. As we show, by using knowledge on gene sets, UNIFAN greatly outperforms prior methods developed for clustering scRNA-Seq data. The gene sets assigned by UNIFAN to different clusters provide strong evidence for the cell type that is represented by this cluster making annotations easier.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3099 ◽  
Author(s):  
Xuan ◽  
Li ◽  
Zhang ◽  
Zhang ◽  
Song

Identifying disease-associated microRNAs (disease miRNAs) contributes to the understanding of disease pathogenesis. Most previous computational biology studies focused on multiple kinds of connecting edges of miRNAs and diseases, including miRNA–miRNA similarities, disease–disease similarities, and miRNA–disease associations. Few methods exploited the node attribute information related to miRNA family and cluster. The previous methods do not completely consider the sparsity of node attributes. Additionally, it is challenging to deeply integrate the node attributes of miRNAs and the similarities and associations related to miRNAs and diseases. In the present study, we propose a novel method, known as MDAPred, based on nonnegative matrix factorization to predict candidate disease miRNAs. MDAPred integrates the node attributes of miRNAs and the related similarities and associations of miRNAs and diseases. Since a miRNA is typically subordinate to a family or a cluster, the node attributes of miRNAs are sparse. Similarly, the data for miRNA and disease similarities are sparse. Projecting the miRNA and disease similarities and miRNA node attributes into a common low-dimensional space contributes to estimating miRNA-disease associations. Simultaneously, the possibility that a miRNA is associated with a disease depends on the miRNA’s neighbour information. Therefore, MDAPred deeply integrates projections of multiple kinds of connecting edges, projections of miRNAs node attributes, and neighbour information of miRNAs. The cross-validation results showed that MDAPred achieved superior performance compared to other state-of-the-art methods for predicting disease-miRNA associations. MDAPred can also retrieve more actual miRNA-disease associations at the top of prediction results, which is very important for biologists. Additionally, case studies of breast, lung, and pancreatic cancers further confirmed the ability of MDAPred to discover potential miRNA–disease associations.


Author(s):  
Borja Freire ◽  
Susana Ladra ◽  
Jose R Paramá ◽  
Leena Salmela

Abstract Motivation RNA viruses exhibit a high mutation rate and thus they exist in infected cells as a population of closely related strains called viral quasispecies. The viral quasispecies assembly problem asks to characterize the quasispecies present in a sample from high-throughput sequencing data. We study the de novo version of the problem, where reference sequences of the quasispecies are not available. Current methods for assembling viral quasispecies are either based on overlap graphs or on de Bruijn graphs. Overlap graph-based methods tend to be accurate but slow, whereas de Bruijn graph-based methods are fast but less accurate. Results We present viaDBG, which is a fast and accurate de Bruijn graph-based tool for de novo assembly of viral quasispecies. We first iteratively correct sequencing errors in the reads, which allows us to use large k-mers in the de Bruijn graph. To incorporate the paired-end information in the graph, we also adapt the paired de Bruijn graph for viral quasispecies assembly. These features enable the use of long-range information in contig construction without compromising the speed of de Bruijn graph-based approaches. Our experimental results show that viaDBG is both accurate and fast, whereas previous methods are either fast or accurate but not both. In particular, viaDBG has comparable or better accuracy than SAVAGE, while being at least nine times faster. Furthermore, the speed of viaDBG is comparable to PEHaplo but viaDBG is able to retrieve also low abundance quasispecies, which are often missed by PEHaplo. Availability and implementation viaDBG is implemented in C++ and it is publicly available at https://bitbucket.org/bfreirec1/viadbg. All datasets used in this article are publicly available at https://bitbucket.org/bfreirec1/data-viadbg/. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Julian Garneau ◽  
Florence Depardieu ◽  
Louis-Charles Fortier ◽  
David Bikard ◽  
Marc Monot

ABSTRACTBacteriophages are the most abundant viruses on earth and display an impressive genetic as well as morphologic diversity. Among those, the most common order of phages is the Caudovirales, whose viral particles packages linear double stranded DNA (dsDNA). In this study we investigated how the information gathered by high throughput sequencing technologies can be used to determine the DNA termini and packaging mechanisms of dsDNA phages. The wet-lab procedures traditionally used for this purpose rely on the identification and cloning of restriction fragment which can be delicate and cumbersome. Here, we developed a theoretical and statistical framework to analyze DNA termini and phage packaging mechanisms using next-generation sequencing data. Our methods, implemented in the PhageTerm software, work with sequencing reads in fastq format and the corresponding assembled phage genome.PhageTerm was validated on a set of phages with well-established packaging mechanisms representative of the termini diversity: 5’cos (lambda), 3’cos (HK97), pac (P1), headful without a pac site (T4), DTR (T7) and host fragment (Mu). In addition, we determined the termini of 9Clostridium difficilephages and 6 phages whose sequences where retrieved from the sequence read archive (SRA).A direct graphical interface is available as a Galaxy wrapper version athttps://galaxy.pasteur.frand a standalone version is accessible athttps://sourceforge.net/projects/phageterm/.


Sign in / Sign up

Export Citation Format

Share Document