scholarly journals Investigating the interaction between white matter and brain state on tDCS-induced changes in brain network activity

2020 ◽  
Author(s):  
Danielle L. Kurtin ◽  
Ines R. Violante ◽  
Karl Zimmerman ◽  
Robert Leech ◽  
Adam Hampshire ◽  
...  

AbstractBackgroundTranscranial direct current stimulation (tDCS) is a form of noninvasive brain stimulation whose potential as a cognitive therapy is hindered by our limited understanding of how participant and experimental factors influence its effects. Using functional MRI to study brain networks, we have previously shown in healthy controls that the physiological effects of tDCS are strongly influenced by brain state. We have additionally shown, in both healthy and traumatic brain injury (TBI) populations, that the behavioral effects of tDCS are positively correlated with white matter (WM) structure.ObjectivesIn this study we investigate how these two factors, WM structure and brain state, interact to shape the effect of tDCS on brain network activity.MethodsWe applied anodal, cathodal and sham tDCS to the right inferior frontal gyrus (rIFG) of healthy (n=22) and TBI participants (n=34). We used the Choice Reaction Task (CRT) performance to manipulate brain state during tDCS. We acquired simultaneous fMRI to assess activity of cognitive brain networks and used Fractional Anisotropy (FA) as a measure of WM structure.ResultsWe find that the effects of tDCS on brain network activity in TBI participants are highly dependent on brain state, replicating findings from our previous healthy control study in a separate, patient cohort. We then show that WM structure further modulates the brain-state dependent effects of tDCS on brain network activity. These effects are not unidirectional – in the absence of task with anodal and cathodal tDCS, FA is positively correlated with brain activity in several regions of the default mode network. Conversely, with cathodal tDCS during CRT performance, FA is negatively correlated with brain activity in a salience network region.ConclusionsOur results show that experimental and participant factors interact to have unexpected effects on brain network activity, and that these effects are not fully predictable by studying the factors in isolation.

2019 ◽  
Vol 61 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Pei-Wen Zhu ◽  
You Chen ◽  
Ying-Xin Gong ◽  
Nan Jiang ◽  
Wen-Feng Liu ◽  
...  

Background Neuroimaging studies revealed that trigeminal neuralgia was related to alternations in brain anatomical function and regional function. However, the functional characteristics of network organization in the whole brain is unknown. Purpose The aim of the present study was to analyze potential functional network brain-activity changes and their relationships with clinical features in patients with trigeminal neuralgia via the voxel-wise degree centrality method. Material and Methods This study involved a total of 28 trigeminal neuralgia patients (12 men, 16 women) and 28 healthy controls matched in sex, age, and education. Spontaneous brain activity was evaluated by degree centrality. Correlation analysis was used to examine the correlations between behavioral performance and average degree centrality values in several brain regions. Results Compared with healthy controls, trigeminal neuralgia patients had significantly higher degree centrality values in the right lingual gyrus, right postcentral gyrus, left paracentral lobule, and bilateral inferior cerebellum. Receiver operative characteristic curve analysis of each brain region confirmed excellent accuracy of the areas under the curve. There was a positive correlation between the mean degree centrality value of the right postcentral gyrus and VAS score (r = 0.885, P < 0.001). Conclusions Trigeminal neuralgia causes abnormal brain network activity in multiple brain regions, which may be related to underlying disease mechanisms.


2020 ◽  
Vol 11 ◽  
Author(s):  
Wanghuan Dun ◽  
Tongtong Fan ◽  
Qiming Wang ◽  
Ke Wang ◽  
Jing Yang ◽  
...  

Empathy refers to the ability to understand someone else's emotions and fluctuates with the current state in healthy individuals. However, little is known about the neural network of empathy in clinical populations at different pain states. The current study aimed to examine the effects of long-term pain on empathy-related networks and whether empathy varied at different pain states by studying primary dysmenorrhea (PDM) patients. Multivariate partial least squares was employed in 46 PDM women and 46 healthy controls (HC) during periovulatory, luteal, and menstruation phases. We identified neural networks associated with different aspects of empathy in both groups. Part of the obtained empathy-related network in PDM exhibited a similar activity compared with HC, including the right anterior insula and other regions, whereas others have an opposite activity in PDM, including the inferior frontal gyrus and right inferior parietal lobule. These results indicated an abnormal regulation to empathy in PDM. Furthermore, there was no difference in empathy association patterns in PDM between the pain and pain-free states. This study suggested that long-term pain experience may lead to an abnormal function of the brain network for empathy processing that did not vary with the pain or pain-free state across the menstrual cycle.


2017 ◽  
Author(s):  
Lucia M. Li ◽  
Ines R. Violante ◽  
Rob Leech ◽  
Ewan Ross ◽  
Adam Hampshire ◽  
...  

AbstractTranscranial direct current stimulation (TDCS) has been widely used to improve cognitive function. However, current deficiencies in mechanistic understanding hinders wider applicability. To clarify its physiological effects, we acquired fMRI whilst simultaneously acquiring TDCS to the right inferior frontal gyrus (rIFG) of healthy human participants, a region involved in coordinating activity within brain networks. TDCS caused widespread modulation of network activity depending on brain state (‘rest’ or choice reaction time task) and polarity (anodal or cathodal). During task, TDCS increased salience network activation and default mode network deactivation, but had the opposite effect during ‘rest’. Furthermore, there was an interaction between brain state and TDCS polarity, with cathodal effects more pronounced during task performance and anodal effects more pronounced during ‘rest’. Overall, we show that rIFG TDCS produces brain state and polarity dependent effects within large-scale cognitive networks, in a manner that goes beyond predictions from the current literature.


2017 ◽  
Vol 46 (1) ◽  
pp. 392-402 ◽  
Author(s):  
Gang Tan ◽  
Zeng-Renqing Dan ◽  
Ying Zhang ◽  
Xin Huang ◽  
Yu-Lin Zhong ◽  
...  

Objective To investigate the underlying functional network brain-activity changes in patients with adult comitant exotropia strabismus (CES) and the relationship with clinical features using the voxel-wise degree centrality (DC) method. Methods A total of 30 patients with CES (17 men, 13 women), and 30 healthy controls (HCs; 17 men, 13 women) matched in age, sex, and education level participated in the study. DC was used to evaluate spontaneous brain activity. Receiver operating characteristic (ROC) curve analysis was conducted to distinguish CESs from HCs. The relationship between mean DC values in various brain regions and behavioral performance was examined with correlation analysis. Results Compared with HCs, CES patients exhibited decreased DC values in the right cerebellum posterior lobe, right inferior frontal gyrus, right middle frontal gyrus and right superior parietal lobule/primary somatosensory cortex (S1), and increased DC values in the right superior temporal gyrus, bilateral anterior cingulate, right superior temporal gyrus, and left inferior parietal lobule. However, there was no correlation between mean DC values and behavioral performance in any brain regions. Conclusions Adult comitant exotropia strabismus is associated with abnormal brain network activity in various brain regions, possibly reflecting the pathological mechanisms of ocular motility disorders in CES.


2019 ◽  
Author(s):  
João F. Guassi Moreira ◽  
Katie A. McLaughlin ◽  
Jennifer A. Silvers

AbstractThe ability to regulate emotions is key to goal attainment and wellbeing. Although much has been discovered about how the human brain develops to support the acquisition of emotion regulation, very little of this work has leveraged information encoded in whole-brain networks. Here we employed a network neuroscience framework in conjunction with machine learning to: (i) parse the neural underpinnings of emotion regulation skill acquisition while accounting for age, and (ii) build a working taxonomy of brain network activity supporting emotion regulation in a sample of youth (N = 70, 34 female). We were able to predict emotion regulation ability, but not age, using network activity metrics from whole-brain networks during an emotion regulation task. Further, by leveraging analytic techniques traditionally used in evolutionary biology (e.g., cophenetic correlations), we were able to demonstrate that brain networks evince reliable taxonomic organization to meet emotion regulation demands in youth. This work shows that meaningful information about emotion regulation development is encoded in whole-brain network activity, suggesting that brain activity during emotion regulation encodes unique information about regulatory skill acquisition in youth but not domain-general maturation.Significance StatementThe acquisition of emotion regulation is critical for healthy functioning in later adult life. To date, little is known about how brain networks support the developmental acquisition of emotion regulation skills. This is noteworthy because brain networks have been increasingly shown to provide highly useful information about neural activity. Here we show that brain activity during an emotion regulation task encodes information about regulatory abilities over and above age. These results suggest emotion regulation skills are dependent on neural specialization of domain-specific systems, whereas age is encoded via domain-general systems.


2019 ◽  
Author(s):  
Yongjie Zhu ◽  
Chi Zhang ◽  
Petri Toiviainen ◽  
Minna Huotilainen ◽  
Klaus Mathiak ◽  
...  

AbstractRecently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video represents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level electro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and musical feature during free-listening to music. We used a data-driven method that combined music information retrieval with spatial Independent Components Analysis (ICA) to probe the interplay between the spatial profiles and the spectral patterns. We projected the sensor data into cortical space using a minimum-norm estimate and applied the Short Time Fourier Transform (STFT) to obtain frequency information. Then, spatial ICA was made to extract spatial-spectral-temporal information of brain activity in source space and five long-term musical features were computationally extracted from the naturalistic stimuli. The spatial profiles of the components whose temporal courses were significantly correlated with musical feature time series were clustered to identify reproducible brain networks across the participants. Using the proposed approach, we found brain networks of musical feature processing are frequency-dependent and three plausible frequency-dependent networks were identified; the proposed method seems valuable for characterizing the large-scale frequency-dependent brain activity engaged in musical feature processing.


2021 ◽  
Vol 14 (5) ◽  
pp. 1261-1270
Author(s):  
Danielle L. Kurtin ◽  
Ines R. Violante ◽  
Karl Zimmerman ◽  
Robert Leech ◽  
Adam Hampshire ◽  
...  

SLEEP ◽  
2021 ◽  
Author(s):  
Ernesto Sanz-Arigita ◽  
Yannick Daviaux ◽  
Marc Joliot ◽  
Bixente Dilharreguy ◽  
Jean-Arthur Micoulaud-Franchi ◽  
...  

Abstract Study objectives Emotional reactivity to negative stimuli has been investigated in insomnia, but little is known about emotional reactivity to positive stimuli and its neural representation. Methods We used 3T fMRI to determine neural reactivity during the presentation of standardized short, 10-40-s, humorous films in insomnia patients (n=20, 18 females, aged 27.7 +/- 8.6 years) and age-matched individuals without insomnia (n=20, 19 females, aged 26.7 +/- 7.0 years), and assessed humour ratings through a visual analogue scale (VAS). Seed-based functional connectivity was analysed for left and right amygdala networks: group-level mixed-effects analysis (FLAME; FSL) was used to compare amygdala connectivity maps between groups. Results fMRI seed-based analysis of the amygdala revealed stronger neural reactivity in insomnia patients than in controls in several brain network clusters within the reward brain network, without humour rating differences between groups (p = 0.6). For left amygdala connectivity, cluster maxima were in the left caudate (Z=3.88), left putamen (Z=3.79) and left anterior cingulate gyrus (Z=4.11), while for right amygdala connectivity, cluster maxima were in the left caudate (Z=4.05), right insula (Z=3.83) and left anterior cingulate gyrus (Z=4.29). Cluster maxima of the right amygdala network were correlated with hyperarousal scores in insomnia patients only. Conclusions Presentation of humorous films leads to increased brain activity in the neural reward network for insomnia patients compared to controls, related to hyperarousal features in insomnia patients, in the absence of humor rating group differences. These novel findings may benefit insomnia treatment interventions.


2021 ◽  
Author(s):  
Zhaoqi Zhang ◽  
Qiming Yuan ◽  
Zeping Liu ◽  
Man Zhang ◽  
Junjie Wu ◽  
...  

Abstract Writing sequences play an important role in handwriting of Chinese characters. However, little is known regarding the integral brain patterns and network mechanisms of processing Chinese character writing sequences. The present study decoded brain patterns during observing Chinese characters in motion by using multi-voxel pattern analysis (MVPA), meta-analytic decoding analysis, and extended unified structural equation model (euSEM). We found that perception of Chinese character writing sequence recruited brain regions not only for general motor schema processing, i.e., the right inferior frontal gyrus, shifting and inhibition functions, i.e., the right postcentral gyrus and bilateral pre-SMA/dACC, but also for sensorimotor functions specific for writing sequences. More importantly, these brain regions formed a cooperatively top-down brain network where information was transmitted from brain regions for general motor schema processing to those specific for writing sequences. These findings not only shed light on the neural mechanisms of Chinese character writing sequences, but also extend the hierarchical control model on motor schema processing.


Stroke ◽  
2021 ◽  
Author(s):  
Olga Boukrina ◽  
Mateusz Kowalczyk ◽  
Yury Koush ◽  
Yekyung Kong ◽  
A.M. Barrett

Background and Purpose: Delirium, an acute reduction in cognitive functioning, hinders stroke recovery and contributes to cognitive decline. Right-hemisphere stroke is linked with higher delirium incidence, likely, due to the prevalence of spatial neglect (SN), a right-brain disorder of spatial processing. This study tested if symptoms of delirium and SN after right-hemisphere stroke are associated with abnormal function of the right-dominant neural networks specialized for maintaining attention, orientation, and arousal. Methods: Twenty-nine participants with right-hemisphere ischemic stroke undergoing acute rehabilitation completed delirium and SN assessments and functional neuroimaging scans. Whole-brain functional connectivity of 4 right-hemisphere seed regions in the cortical-subcortical arousal and attention networks was assessed for its relationship to validated SN and delirium severity measures. Results: Of 29 patients, 6 (21%) met the diagnostic criteria for delirium and 16 (55%) for SN. Decreased connectivity of the right basal forebrain to brain stem and basal ganglia predicted more severe SN. Increased connectivity of the arousal and attention network regions with the parietal, frontal, and temporal structures in the unaffected hemisphere was also found in more severe delirium and SN. Conclusions: Delirium and SN are associated with decreased arousal network activity and an imbalance of cortico-subcortical hemispheric connectivity. Better understanding of neural correlates of poststroke delirium and SN will lead to improved neuroscience-based treatment development for these disorders.


Sign in / Sign up

Export Citation Format

Share Document