scholarly journals Exploring Frequency-dependent Brain Networks from ongoing EEG using Spatial ICA during music listening

2019 ◽  
Author(s):  
Yongjie Zhu ◽  
Chi Zhang ◽  
Petri Toiviainen ◽  
Minna Huotilainen ◽  
Klaus Mathiak ◽  
...  

AbstractRecently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video represents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level electro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and musical feature during free-listening to music. We used a data-driven method that combined music information retrieval with spatial Independent Components Analysis (ICA) to probe the interplay between the spatial profiles and the spectral patterns. We projected the sensor data into cortical space using a minimum-norm estimate and applied the Short Time Fourier Transform (STFT) to obtain frequency information. Then, spatial ICA was made to extract spatial-spectral-temporal information of brain activity in source space and five long-term musical features were computationally extracted from the naturalistic stimuli. The spatial profiles of the components whose temporal courses were significantly correlated with musical feature time series were clustered to identify reproducible brain networks across the participants. Using the proposed approach, we found brain networks of musical feature processing are frequency-dependent and three plausible frequency-dependent networks were identified; the proposed method seems valuable for characterizing the large-scale frequency-dependent brain activity engaged in musical feature processing.


2020 ◽  
Author(s):  
Rosaria Rucco ◽  
Anna Lardone ◽  
marianna Liparoti ◽  
Emahnuel Troisi Lopez ◽  
Rosa De Micco ◽  
...  

Aim The aim of the present study is to investigate the relations between both functional connectivity and brain networks with cognitive decline, in patients with Parkinson′s disease (PD). Introduction PD phenotype is not limited to motor impairment but, rather, a wide range of non-motor disturbances can occur, cognitive impairment being one of the commonest. However, how the large-scale organization of brain activity differs in cognitively impaired patients, as opposed to cognitively preserved ones, remains poorly understood. Methods Starting from source-reconstructed resting-state magnetoencephalography data, we applied the PLM to estimate functional connectivity, globally and between brain areas, in PD patients with and without cognitive impairment (respectively PD-CI and PD-NC), as compared to healthy subjects (HS). Furthermore, using graph analysis, we characterized the alterations in brain network topology and related these, as well as the functional connectivity, to cognitive performance. Results We found reduced global and nodal PLM in several temporal (fusiform gyrus, Heschl′s gyrus and inferior temporal gyrus), parietal (postcentral gyrus), and occipital (lingual gyrus) areas within the left hemisphere, in the gamma band, in PD-CI patients, as compared to PD-NC and HS. With regard to the global topological features, PD-CI patients, as compared to HS and PD-NC patients, showed differences in multi frequencies bands (delta, alpha, gamma) in the Leaf fraction, Tree hierarchy (both higher in PD-CI) and Diameter (lower in PD-CI). Finally, we found statistically significant correlations between the MoCA test and both the Diameter in delta band and the Tree Hierarchy in the alpha band. Conclusion Our work points to specific large-scale rearrangements that occur selectively in cognitively compromised PD patients and correlated to cognitive impairment.



2019 ◽  
Author(s):  
Jessica S. Flannery ◽  
Michael C. Riedel ◽  
Katherine L. Bottenhorn ◽  
Ranjita Poudel ◽  
Taylor Salo ◽  
...  

ABSTRACTReward learning is a ubiquitous cognitive mechanism guiding adaptive choices and behaviors, and when impaired, can lead to considerable mental health consequences. Reward-related functional neuroimaging studies have begun to implicate networks of brain regions essential for processing various peripheral influences (e.g., risk, subjective preference, delay, social context) involved in the multifaceted reward processing construct. To provide a more complete neurocognitive perspective on reward processing that synthesizes findings across the literature while also appreciating these peripheral influences, we utilized emerging meta-analytic techniques to elucidate brain regions, and in turn networks, consistently engaged in distinct aspects of reward processing. Using a data-driven, meta-analytic, k-means clustering approach, we dissociated seven meta-analytic groupings (MAGs) of neuroimaging results (i.e., brain activity maps) from 749 experimental contrasts across 176 reward processing studies involving 13,358 healthy participants. We then performed an exploratory functional decoding approach to gain insight into the putative functions associated with each MAG. We identified a seven-MAG clustering solution which represented dissociable patterns of convergent brain activity across reward processing tasks. Additionally, our functional decoding analyses revealed that each of these MAGs mapped onto discrete behavior profiles that suggested specialized roles in predicting value (MAG-1 & MAG-2) and processing a variety of emotional (MAG-3), external (MAG-4 & MAG-5), and internal (MAG-6 & MAG-7) influences across reward processing paradigms. These findings support and extend aspects of well-accepted reward learning theories and highlight large-scale brain network activity associated with distinct aspects of reward processing.



2020 ◽  
Author(s):  
Danielle L. Kurtin ◽  
Ines R. Violante ◽  
Karl Zimmerman ◽  
Robert Leech ◽  
Adam Hampshire ◽  
...  

AbstractBackgroundTranscranial direct current stimulation (tDCS) is a form of noninvasive brain stimulation whose potential as a cognitive therapy is hindered by our limited understanding of how participant and experimental factors influence its effects. Using functional MRI to study brain networks, we have previously shown in healthy controls that the physiological effects of tDCS are strongly influenced by brain state. We have additionally shown, in both healthy and traumatic brain injury (TBI) populations, that the behavioral effects of tDCS are positively correlated with white matter (WM) structure.ObjectivesIn this study we investigate how these two factors, WM structure and brain state, interact to shape the effect of tDCS on brain network activity.MethodsWe applied anodal, cathodal and sham tDCS to the right inferior frontal gyrus (rIFG) of healthy (n=22) and TBI participants (n=34). We used the Choice Reaction Task (CRT) performance to manipulate brain state during tDCS. We acquired simultaneous fMRI to assess activity of cognitive brain networks and used Fractional Anisotropy (FA) as a measure of WM structure.ResultsWe find that the effects of tDCS on brain network activity in TBI participants are highly dependent on brain state, replicating findings from our previous healthy control study in a separate, patient cohort. We then show that WM structure further modulates the brain-state dependent effects of tDCS on brain network activity. These effects are not unidirectional – in the absence of task with anodal and cathodal tDCS, FA is positively correlated with brain activity in several regions of the default mode network. Conversely, with cathodal tDCS during CRT performance, FA is negatively correlated with brain activity in a salience network region.ConclusionsOur results show that experimental and participant factors interact to have unexpected effects on brain network activity, and that these effects are not fully predictable by studying the factors in isolation.



2019 ◽  
Author(s):  
João F. Guassi Moreira ◽  
Katie A. McLaughlin ◽  
Jennifer A. Silvers

AbstractThe ability to regulate emotions is key to goal attainment and wellbeing. Although much has been discovered about how the human brain develops to support the acquisition of emotion regulation, very little of this work has leveraged information encoded in whole-brain networks. Here we employed a network neuroscience framework in conjunction with machine learning to: (i) parse the neural underpinnings of emotion regulation skill acquisition while accounting for age, and (ii) build a working taxonomy of brain network activity supporting emotion regulation in a sample of youth (N = 70, 34 female). We were able to predict emotion regulation ability, but not age, using network activity metrics from whole-brain networks during an emotion regulation task. Further, by leveraging analytic techniques traditionally used in evolutionary biology (e.g., cophenetic correlations), we were able to demonstrate that brain networks evince reliable taxonomic organization to meet emotion regulation demands in youth. This work shows that meaningful information about emotion regulation development is encoded in whole-brain network activity, suggesting that brain activity during emotion regulation encodes unique information about regulatory skill acquisition in youth but not domain-general maturation.Significance StatementThe acquisition of emotion regulation is critical for healthy functioning in later adult life. To date, little is known about how brain networks support the developmental acquisition of emotion regulation skills. This is noteworthy because brain networks have been increasingly shown to provide highly useful information about neural activity. Here we show that brain activity during an emotion regulation task encodes information about regulatory abilities over and above age. These results suggest emotion regulation skills are dependent on neural specialization of domain-specific systems, whereas age is encoded via domain-general systems.



2020 ◽  
Vol 30 (5) ◽  
pp. 3352-3369 ◽  
Author(s):  
Zachary P Rosenthal ◽  
Ryan V Raut ◽  
Ping Yan ◽  
Deima Koko ◽  
Andrew W Kraft ◽  
...  

Abstract Electrophysiological recordings have established that GABAergic interneurons regulate excitability, plasticity, and computational function within local neural circuits. Importantly, GABAergic inhibition is focally disrupted around sites of brain injury. However, it remains unclear whether focal imbalances in inhibition/excitation lead to widespread changes in brain activity. Here, we test the hypothesis that focal perturbations in excitability disrupt large-scale brain network dynamics. We used viral chemogenetics in mice to reversibly manipulate parvalbumin interneuron (PV-IN) activity levels in whisker barrel somatosensory cortex. We then assessed how this imbalance affects cortical network activity in awake mice using wide-field optical neuroimaging of pyramidal neuron GCaMP dynamics as well as local field potential recordings. We report 1) that local changes in excitability can cause remote, network-wide effects, 2) that these effects propagate differentially through intra- and interhemispheric connections, and 3) that chemogenetic constructs can induce plasticity in cortical excitability and functional connectivity. These findings may help to explain how focal activity changes following injury lead to widespread network dysfunction.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rieke Fruengel ◽  
Timo Bröhl ◽  
Thorsten Rings ◽  
Klaus Lehnertz

AbstractPrevious research has indicated that temporal changes of centrality of specific nodes in human evolving large-scale epileptic brain networks carry information predictive of impending seizures. Centrality is a fundamental network-theoretical concept that allows one to assess the role a node plays in a network. This concept allows for various interpretations, which is reflected in a number of centrality indices. Here we aim to achieve a more general understanding of local and global network reconfigurations during the pre-seizure period as indicated by changes of different node centrality indices. To this end, we investigate—in a time-resolved manner—evolving large-scale epileptic brain networks that we derived from multi-day, multi-electrode intracranial electroencephalograpic recordings from a large but inhomogeneous group of subjects with pharmacoresistant epilepsies with different anatomical origins. We estimate multiple centrality indices to assess the various roles the nodes play while the networks transit from the seizure-free to the pre-seizure period. Our findings allow us to formulate several major scenarios for the reconfiguration of an evolving epileptic brain network prior to seizures, which indicate that there is likely not a single network mechanism underlying seizure generation. Rather, local and global aspects of the pre-seizure network reconfiguration affect virtually all network constituents, from the various brain regions to the functional connections between them.



2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Aurélie Bochet ◽  
Holger Franz Sperdin ◽  
Tonia Anahi Rihs ◽  
Nada Kojovic ◽  
Martina Franchini ◽  
...  

AbstractAutism spectrum disorders (ASD) are associated with disruption of large-scale brain network. Recently, we found that directed functional connectivity alterations of social brain networks are a core component of atypical brain development at early developmental stages in ASD. Here, we investigated the spatio-temporal dynamics of whole-brain neuronal networks at a subsecond scale in 113 toddlers and preschoolers (66 with ASD) using an EEG microstate approach. We first determined the predominant microstates using established clustering methods. We identified five predominant microstate (labeled as microstate classes A–E) with significant differences in the temporal dynamics of microstate class B between the groups in terms of increased appearance and prolonged duration. Using Markov chains, we found differences in the dynamic syntax between several maps in toddlers and preschoolers with ASD compared to their TD peers. Finally, exploratory analysis of brain–behavioral relationships within the ASD group suggested that the temporal dynamics of some maps were related to conditions comorbid to ASD during early developmental stages.



2020 ◽  
Vol 30 (10) ◽  
pp. 2050051
Author(s):  
Feng Fang ◽  
Thomas Potter ◽  
Thinh Nguyen ◽  
Yingchun Zhang

Emotion and affect play crucial roles in human life that can be disrupted by diseases. Functional brain networks need to dynamically reorganize within short time periods in order to efficiently process and respond to affective stimuli. Documenting these large-scale spatiotemporal dynamics on the same timescale they arise, however, presents a large technical challenge. In this study, the dynamic reorganization of the cortical functional brain network during an affective processing and emotion regulation task is documented using an advanced multi-model electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) technique. Sliding time window correlation and [Formula: see text]-means clustering are employed to explore the functional brain connectivity (FC) dynamics during the unaltered perception of neutral (moderate valence, low arousal) and negative (low valence, high arousal) stimuli and cognitive reappraisal of negative stimuli. Betweenness centralities are computed to identify central hubs within each complex network. Results from 20 healthy subjects indicate that the cortical mechanism for cognitive reappraisal follows a ‘top-down’ pattern that occurs across four brain network states that arise at different time instants (0–170[Formula: see text]ms, 170–370[Formula: see text]ms, 380–620[Formula: see text]ms, and 620–1000[Formula: see text]ms). Specifically, the dorsolateral prefrontal cortex (DLPFC) is identified as a central hub to promote the connectivity structures of various affective states and consequent regulatory efforts. This finding advances our current understanding of the cortical response networks of reappraisal-based emotion regulation by documenting the recruitment process of four functional brain sub-networks, each seemingly associated with different cognitive processes, and reveals the dynamic reorganization of functional brain networks during emotion regulation.



Author(s):  
Shigehiro Namiki ◽  
Norio Matsuki ◽  
Yuji Ikegaya


2019 ◽  
Vol 61 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Pei-Wen Zhu ◽  
You Chen ◽  
Ying-Xin Gong ◽  
Nan Jiang ◽  
Wen-Feng Liu ◽  
...  

Background Neuroimaging studies revealed that trigeminal neuralgia was related to alternations in brain anatomical function and regional function. However, the functional characteristics of network organization in the whole brain is unknown. Purpose The aim of the present study was to analyze potential functional network brain-activity changes and their relationships with clinical features in patients with trigeminal neuralgia via the voxel-wise degree centrality method. Material and Methods This study involved a total of 28 trigeminal neuralgia patients (12 men, 16 women) and 28 healthy controls matched in sex, age, and education. Spontaneous brain activity was evaluated by degree centrality. Correlation analysis was used to examine the correlations between behavioral performance and average degree centrality values in several brain regions. Results Compared with healthy controls, trigeminal neuralgia patients had significantly higher degree centrality values in the right lingual gyrus, right postcentral gyrus, left paracentral lobule, and bilateral inferior cerebellum. Receiver operative characteristic curve analysis of each brain region confirmed excellent accuracy of the areas under the curve. There was a positive correlation between the mean degree centrality value of the right postcentral gyrus and VAS score (r = 0.885, P < 0.001). Conclusions Trigeminal neuralgia causes abnormal brain network activity in multiple brain regions, which may be related to underlying disease mechanisms.



Sign in / Sign up

Export Citation Format

Share Document