The Cortical Organization of Writing Sequence: Evidence From Observing Chinese Characters in Motion

Author(s):  
Zhaoqi Zhang ◽  
Qiming Yuan ◽  
Zeping Liu ◽  
Man Zhang ◽  
Junjie Wu ◽  
...  

Abstract Writing sequences play an important role in handwriting of Chinese characters. However, little is known regarding the integral brain patterns and network mechanisms of processing Chinese character writing sequences. The present study decoded brain patterns during observing Chinese characters in motion by using multi-voxel pattern analysis (MVPA), meta-analytic decoding analysis, and extended unified structural equation model (euSEM). We found that perception of Chinese character writing sequence recruited brain regions not only for general motor schema processing, i.e., the right inferior frontal gyrus, shifting and inhibition functions, i.e., the right postcentral gyrus and bilateral pre-SMA/dACC, but also for sensorimotor functions specific for writing sequences. More importantly, these brain regions formed a cooperatively top-down brain network where information was transmitted from brain regions for general motor schema processing to those specific for writing sequences. These findings not only shed light on the neural mechanisms of Chinese character writing sequences, but also extend the hierarchical control model on motor schema processing.

2002 ◽  
Vol 14 (7) ◽  
pp. 1088-1098 ◽  
Author(s):  
Yiping Chen ◽  
Shimin Fu ◽  
Susan D. Iversen ◽  
Steve M. Smith ◽  
Paul M. Matthews

Chinese offers a unique tool for testing the effects of word form on language processing during reading. The processes of letter-mediated grapheme-to-phoneme translation and phonemic assembly (assembled phonology) critical for reading and spelling in any alphabetic orthography are largely absent when reading nonalphabetic Chinese characters. In contrast, script-to-sound translation based on the script as a whole (addressed phonology) is absent when reading the Chinese alphabetic sound symbols known as pinyin, for which the script-to-sound translation is based exclusively on assembled phonology. The present study aims to contrast patterns of brain activity associated with the different cognitive mechanisms needed for reading the two scripts. fMRI was used with a block design involving a phonological and lexical task in which subjects were asked to decide whether visually presented, paired Chinese characters or pinyin “sounded like” a word. Results demonstrate that reading Chinese characters and pinyin activate a common brain network including the inferior frontal, middle, and inferior temporal gyri, the inferior and superior parietal lobules, and the extrastriate areas. However, some regions show relatively greater activation for either pinyin or Chinese reading. Reading pinyin led to a greater activation in the inferior parietal cortex bilaterally, the precuneus, and the anterior middle temporal gyrus. In contrast, activation in the left fusiform gyrus, the bilateral cuneus, the posterior middle temporal, the right inferior frontal gyrus, and the bilateral superior frontal gyrus were greater for nonalphabetic Chinese reading. We conclude that both alphabetic and nonalphabetic scripts activate a common brain network for reading. Overall, there are no differences in terms of hemispheric specialization between alphabetic and nonalphabetic scripts. However, differences in language surface form appear to determine relative activation in other regions. Some of these regions (e.g., the inferior parietal cortex for pinyin and fusiform gyrus for Chinese characters) are candidate regions for specialized processes associated with reading via predominantly assembled (pinyin) or addressed (Chinese character) procedures.


2021 ◽  
Author(s):  
Mengxing Wang ◽  
Xiangyu Zheng ◽  
Zhaoxia Qin ◽  
Jun Ma ◽  
Xiaoxia Du

Abstract Background: Primary monosymptomatic nocturnal enuresis (PMNE) is a common disorder among school-age children. Previous research has suggested that the prefrontal cortex (PFC) is essential to maintain urine storage in bladder control. We hypothesized that children with PMNE have functional deficits in several brain regions, especially the PFC, during urine storage. In this work, we investigated 30 children with PMNE and 28 controls in a state of natural urine holding to evaluate dysfunction in the bladder control network by applying degree centrality (DC) analysis methods based on resting-state functional magnetic resonance imaging. And seed-based functional connectivity (FC) analysis was used to investigate whether the dysfunctional areas exhibited altered FC with other brain regions.Results: Compared with the typical healthy children, the children with PMNE showed increased DC in the right inferior frontal gyrus (IFG). Also, the right IFG showed increased connectivity with the left middle and inferior frontal gyri and the right precuneus extending to the cuneus in the children with PMNE.Conclusion: The children with PMNE showed abnormal neural activity during urine storage and exhibited increased DC in the right IFG and increased connectivity with the left PFC and right precuneus during urine storage. These results suggest that compensatory effects may be associated with the right IFG combined with the precuneus and left PFC working together to maintain high vigilance and improve micturition's inhibition function to preserve the state of urine holding in children with PMNE.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
M. G. Tana ◽  
E. Montin ◽  
S. Cerutti ◽  
A. M. Bianchi

Functional magnetic resonance imaging (fMRI) was performed in eight healthy subjects to identify the localization, magnitude, and volume extent of activation in brain regions that are involved in blood oxygen level-dependent (BOLD) response during the performance of Conners' Continuous Performance Test (CPT). An extensive brain network was activated during the task including frontal, temporal, and occipital cortical areas and left cerebellum. The more activated cluster in terms of volume extent and magnitude was located in the right anterior cingulate cortex (ACC). Analyzing the dynamic trend of the activation in the identified areas during the entire duration of the sustained attention test, we found a progressive decreasing of BOLD response probably due to a habituation effect without any deterioration of the performances. The observed brain network is consistent with existing models of visual object processing and attentional control and may serve as a basis for fMRI studies in clinical populations with neuropsychological deficits in Conners' CPT performance.


2020 ◽  
Vol 61 (10) ◽  
pp. 1388-1397
Author(s):  
Yi Cheng ◽  
Li Yan ◽  
Liqun Hu ◽  
Hongyun Wu ◽  
Xin Huang ◽  
...  

Background Previous studies have linked high myopia (HM) to brain activity, and the difference between HM and low myopia (LM) can be assessed. Purpose To study the differences in functional networks of brain activity between HM and LM by the voxel-level degree centrality (DC) method. Material and Methods Twenty-eight patients with HM (10 men, 18 women), 18 patients with LM (4 men, 14 women), and 59 healthy controls (27 men, 32 women) were enrolled in this study. The voxel-level DC method was used to assess spontaneous brain activity. Correlation analysis was used to explore the change of average DC value in different brain regions, in order to analyze differences in brain activity between HM and LM. Results DC values of the right cerebellum anterior lobe/brainstem, right parahippocampal gyrus, and left caudate in HM patients were significantly higher than those in LM patients ( P < 0.05). In contrast, DC values of the left medial frontal gyrus, right inferior frontal gyrus, left middle frontal gyrus, and left inferior parietal lobule were significantly lower in patients with HM ( P < 0.05). However, there was no correlation between behavior and average DC values in different brain regions ( P < 0.05). Conclusion Different changes in brain regions between HM and LM may indicate differences in neural mechanisms between HM and LM. DC values could be useful as biomarkers for differences in brain activity between patients with HM and LM. This study provides a new method to assess differences in functional networks of brain activity between patients with HM and LM.


2019 ◽  
Vol 61 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Pei-Wen Zhu ◽  
You Chen ◽  
Ying-Xin Gong ◽  
Nan Jiang ◽  
Wen-Feng Liu ◽  
...  

Background Neuroimaging studies revealed that trigeminal neuralgia was related to alternations in brain anatomical function and regional function. However, the functional characteristics of network organization in the whole brain is unknown. Purpose The aim of the present study was to analyze potential functional network brain-activity changes and their relationships with clinical features in patients with trigeminal neuralgia via the voxel-wise degree centrality method. Material and Methods This study involved a total of 28 trigeminal neuralgia patients (12 men, 16 women) and 28 healthy controls matched in sex, age, and education. Spontaneous brain activity was evaluated by degree centrality. Correlation analysis was used to examine the correlations between behavioral performance and average degree centrality values in several brain regions. Results Compared with healthy controls, trigeminal neuralgia patients had significantly higher degree centrality values in the right lingual gyrus, right postcentral gyrus, left paracentral lobule, and bilateral inferior cerebellum. Receiver operative characteristic curve analysis of each brain region confirmed excellent accuracy of the areas under the curve. There was a positive correlation between the mean degree centrality value of the right postcentral gyrus and VAS score (r = 0.885, P < 0.001). Conclusions Trigeminal neuralgia causes abnormal brain network activity in multiple brain regions, which may be related to underlying disease mechanisms.


2020 ◽  
Vol 11 ◽  
Author(s):  
Wanghuan Dun ◽  
Tongtong Fan ◽  
Qiming Wang ◽  
Ke Wang ◽  
Jing Yang ◽  
...  

Empathy refers to the ability to understand someone else's emotions and fluctuates with the current state in healthy individuals. However, little is known about the neural network of empathy in clinical populations at different pain states. The current study aimed to examine the effects of long-term pain on empathy-related networks and whether empathy varied at different pain states by studying primary dysmenorrhea (PDM) patients. Multivariate partial least squares was employed in 46 PDM women and 46 healthy controls (HC) during periovulatory, luteal, and menstruation phases. We identified neural networks associated with different aspects of empathy in both groups. Part of the obtained empathy-related network in PDM exhibited a similar activity compared with HC, including the right anterior insula and other regions, whereas others have an opposite activity in PDM, including the inferior frontal gyrus and right inferior parietal lobule. These results indicated an abnormal regulation to empathy in PDM. Furthermore, there was no difference in empathy association patterns in PDM between the pain and pain-free states. This study suggested that long-term pain experience may lead to an abnormal function of the brain network for empathy processing that did not vary with the pain or pain-free state across the menstrual cycle.


CNS Spectrums ◽  
2013 ◽  
Vol 21 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Erwin Lemche ◽  
Simon A. Surguladze ◽  
Michael J. Brammer ◽  
Mary L. Phillips ◽  
Mauricio Sierra ◽  
...  

ObjectiveThe cerebral mechanisms of traits associated with depersonalization-derealization disorder (DPRD) remain poorly understood.MethodHappy and sad emotion expressions were presented to DPRD and non-referred control (NC) subjects in an implicit event-related functional magnetic resonance imaging (fMRI) design, and correlated with self report scales reflecting typical co-morbidities of DPRD: depression, dissociation, anxiety, somatization.ResultsSignificant differences between the slopes of the two groups were observed for somatization in the right temporal operculum (happy) and ventral striatum, bilaterally (sad). Discriminative regions for symptoms of depression were the right pulvinar (happy) and left amygdala (sad). For dissociation, discriminative regions were the left mesial inferior temporal gyrus (happy) and left supramarginal gyrus (sad). For state anxiety, discriminative regions were the left inferior frontal gyrus (happy) and parahippocampal gyrus (sad). For trait anxiety, discriminative regions were the right caudate head (happy) and left superior temporal gyrus (sad).DiscussionThe ascertained brain regions are in line with previous findings for the respective traits. The findings suggest separate brain systems for each trait.ConclusionOur results do not justify any bias for a certain nosological category in DPRD.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


2020 ◽  
Vol 17 (1) ◽  
pp. 7-15
Author(s):  
Maimun Sholeh

Abstrak: Penelitian ini bertujuan untuk mengetahui pengaruh Modal manusia dan pemberdayaan terhadap kesejahteraan masyarakat miskin khususnya masyarakat miskin yang diberdayakan oleh lembaga zakat  sehingga bisa dibuat strategi  yang tepat untuk meningkatkan kesehteraan mereka. Penelitian ini merupakan studi eksplanatori dilakukan dengan menggunakan pendekatan SEM (Structural Equation Model). Anggota sampel ditentukan dengan metode non-probability sampling khususnya dengan purposive sampling. Data dikumpulkan secara cross section dianalisis secara kuantitatif. Hasil penelitian menunjukkan bahwa baik modal manusia maupun pemberdayaan berpengaruh terhadap kesejahteraan masyarakat miskin khususnya masyarakat penerima pemberdayaan zakat. Abstract: This study aims to determine the effect of human capital and empowerment on the welfare of the poor, especially the poor, who are empowered by zakat institutions so that the right strategy can be made to improve their health. This research is a descriptive study conducted using the SEM (Structural Equation Model) approach. The sample members are determined by the non-probability sampling method, especially by purposive sampling. Data were collected by cross-section and analyzed quantitatively. The results showed that both human capital and empowerment affected the welfare of the poor, especially those who received zakat empowerment.


2019 ◽  
Vol 4 (1) ◽  
pp. 13
Author(s):  
Saka Haditya Murpraptomo ◽  
Lilik Noor Yuliati ◽  
Bagus Sartono

The increasing need for health services, peoples who lived in the Pekayon, Bekasi City were given the opportunity to choose the right clinic. Word of mouth is a marketing technique that can be used by clinics. This study aims to analyze the effects of the marketing mix, perceived risk, and satisfaction on word of mouth at XYZ clinic. The research is a descriptive method with a survey using questionnaires and 200 respondents as the sample. Furthermore, the data analysis technique is descriptive with SPSS16.0 software and Structural Equation Model (SEM) with LISREL 8.70. Based on the results, it can be concluded that the marketing mix has a positive effect on perceived risk, marketing mix has a positive effect on satisfaction, perceived risk has a negative effect on satisfaction, marketing mix has a positive effect on word of mouth, perceived risk has a negative effect on word of mouth, and satisfaction has a positive effect on word of mouth. Referring to these conclusions, it can be confirmed that the clinical management of doctor XYZ needs to improve employee services, convenience the patient that this clinic has expert doctors, and utilizing the use of social media as a marketing strategy.


Sign in / Sign up

Export Citation Format

Share Document