scholarly journals Computerized physical exercise improves the functional architecture of the brain in patients with Parkinson’s Disease: a network science resting-state EEG study

Author(s):  
Vasileios Rafail Xefteris ◽  
Charis Styliadis ◽  
Alexandra Anagnostopoulou ◽  
Panagiotis Kartsidis ◽  
Evangelos Paraskevopoulos ◽  
...  

AbstractPhysical exercise is an effective non-pharmaceutical treatment for Parkinson’s disease (PD) symptoms, both motor and non-motor. Despite the numerous reports on the neuroplastic role of physical exercise in patients with PD (PwPD), its effects have not been thoroughly explored via brain network science, which can provide a coherent framework for understanding brain functioning. We used resting-state EEG data to investigate the functional connectivity changes of the brain’s intrinsic cortical networks due to physical exercise. The brain activity of 14 PwPD before and after a ten-week protocol of computerized physical training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychometric and somatometric assessments. PwPD showed a significant reorganization of the post-training brain network along with increases in their physical capacity. Specifically, our results revealed significant adjustments in clustering, increased characteristic path length, and decreased global efficiency, in correlation to the improved physical capacity. Our results go beyond previous findings by indicating a transition to a reparative network architecture of enhanced connectivity. We present a meaningful relationship between network characteristics and motor execution capacity which support the use of motor treatment in tandem with medication. This trial is registered with ClinicalTrials.gov Identifier NCT04426903.Impact StatementThe effects of physical training (PT) on the neuroplasticity attributes of patients with Parkinson’s Disease (PwPD) have been well documented via neurophysiological evaluations. However, there is a knowledge gap on the role of training-induced neuroplasticity in whole-brain network organization. We investigated the PT effects on the brain network organization of 14 PwPD, using EEG and network indices coupled with psychosomatometric tests. We report evidence of reparative functional reorganization of the brain with more balanced integration and segregation abilities, in correlation to improved motor performance. The PD brain can repair and reestablish a better level of motor execution and control due to computer-empowered physical stimulation.

2020 ◽  
Vol 25 (42) ◽  
pp. 4510-4522 ◽  
Author(s):  
Biancamaria Longoni ◽  
Irene Fasciani ◽  
Shivakumar Kolachalam ◽  
Ilaria Pietrantoni ◽  
Francesco Marampon ◽  
...  

: Exosomes are extracellular vesicles produced by eukaryotic cells that are also found in most biological fluids and tissues. While they were initially thought to act as compartments for removal of cellular debris, they are now recognized as important tools for cell-to-cell communication and for the transfer of pathogens between the cells. They have attracted particular interest in neurodegenerative diseases for their potential role in transferring prion-like proteins between neurons, and in Parkinson’s disease (PD), they have been shown to spread oligomers of α-synuclein in the brain accelerating the progression of this pathology. A potential neuroprotective role of exosomes has also been equally proposed in PD as they could limit the toxicity of α-synuclein by clearing them out of the cells. Exosomes have also attracted considerable attention for use as drug vehicles. Being nonimmunogenic in nature, they provide an unprecedented opportunity to enhance the delivery of incorporated drugs to target cells. In this review, we discuss current knowledge about the potential neurotoxic and neuroprotective role of exosomes and their potential application as drug delivery systems in PD.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0172394 ◽  
Author(s):  
Robert Westphal ◽  
Camilla Simmons ◽  
Michel B. Mesquita ◽  
Tobias C. Wood ◽  
Steve C. R. Williams ◽  
...  

NeuroImage ◽  
2019 ◽  
Vol 190 ◽  
pp. 79-93 ◽  
Author(s):  
David Meder ◽  
Damian Marc Herz ◽  
James Benedict Rowe ◽  
Stéphane Lehéricy ◽  
Hartwig Roman Siebner

Neuroscience ◽  
2019 ◽  
Vol 418 ◽  
pp. 311-317 ◽  
Author(s):  
Alexandra Potvin-Desrochers ◽  
Trina Mitchell ◽  
Thomas Gisiger ◽  
Caroline Paquette

2019 ◽  
Author(s):  
Aya Kabbara ◽  
Veronique Paban ◽  
Arnaud Weill ◽  
Julien Modolo ◽  
Mahmoud Hassan

AbstractIntroductionIdentifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system which can be studied using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.ObjectiveIn this study, we aimed to evaluate the feasibility of using dynamic network measures to predict personality traits.MethodUsing the EEG/MEG source connectivity method combined with a sliding window approach, dynamic functional brain networks were reconstructed from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state MEG data provided from the Human Connectome Project. Then, several dynamic functional connectivity metrics were evaluated.ResultsSimilar observations were obtained by the two modalities (EEG and MEG) according to the neuroticism, which showed a negative correlation with the dynamic variability of resting state brain networks. In particular, a significant relationship between this personality trait and the dynamic variability of the temporal lobe regions was observed. Results also revealed that extraversion and openness are positively correlated with the dynamics of the brain networks.ConclusionThese findings highlight the importance of tracking the dynamics of functional brain networks to improve our understanding about the neural substrates of personality.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Valentina Vellani ◽  
Lianne P de Vries ◽  
Anne Gaule ◽  
Tali Sharot

Humans are motivated to seek information from their environment. How the brain motivates this behavior is unknown. One speculation is that the brain employs neuromodulatory systems implicated in primary reward-seeking, in particular dopamine, to instruct information-seeking. However, there has been no causal test for the role of dopamine in information-seeking. Here, we show that administration of a drug that enhances dopamine function (dihydroxy-L-phenylalanine; L-DOPA) reduces the impact of valence on information-seeking. Specifically, while participants under Placebo sought more information about potential gains than losses, under L-DOPA this difference was not observed. The results provide new insight into the neurobiology of information-seeking and generates the prediction that abnormal dopaminergic function (such as in Parkinson’s disease) will result in valence-dependent changes to information-seeking.


2018 ◽  
Vol 11 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Maryam Ghahremani ◽  
Jaejun Yoo ◽  
Sun Ju Chung ◽  
Kwangsun Yoo ◽  
Jong C. Ye ◽  
...  

2019 ◽  
Vol 20 (22) ◽  
pp. 5649 ◽  
Author(s):  
Suh Yee Goh ◽  
Yin Xia Chao ◽  
Shaikali Thameem Dheen ◽  
Eng-King Tan ◽  
Samuel Sam-Wah Tay

Parkinson’s disease (PD) is a disabling neurodegenerative disease that manifests with resting tremor, bradykinesia, rigidity and postural instability. Since the discovery of microRNAs (miRNAs) in 1993, miRNAs have been shown to be important biological molecules involved in diverse processes to maintain normal cellular functions. Over the past decade, many studies have reported dysregulation of miRNA expressions in PD. Here, we identified 15 miRNAs from 34 reported screening studies that demonstrated dysregulation in the brain and/or neuronal models, cerebrospinal fluid (CSF) and blood. Specific miRNAs-of-interest that have been implicated in PD pathogenesis include miR-30, miR-29, let-7, miR-485 and miR-26. However, there are several challenges and limitations in drawing definitive conclusions due to the small sample size in clinical studies, varied laboratory techniques and methodologies and their incomplete penetrance of the blood–brain barrier. Developing an optimal delivery system and unravelling druggable targets of miRNAs in both experimental and human models and clinical validation of the results may pave way for novel therapeutics in PD.


Sign in / Sign up

Export Citation Format

Share Document