scholarly journals A tunable multicellular timer in bacterial consortia

2020 ◽  
Author(s):  
Carlos Toscano-Ochoa ◽  
Jordi Garcia-Ojalvo

Processing time-dependent information requires cells to quantify the durations of past regulatory events and program the time span of future signals. Such timer mechanisms are difficult to implement at the level of single cells, however, due to saturation in molecular components and stochasticity in the limited intracellular space. Multicellular implementations, on the other hand, outsource some of the components of information-processing circuits to the extracellular space, and thereby might escape those constraints. Here we develop a theoretical framework, based on a trilinear coordinate representation, to study the collective behavior of a three-strain bacterial population under stationary conditions. This framework reveals that distributing different processes (in our case the production, detection and degradation of a time-encoding signal) across distinct bacterial strains enables the robust implementation of a multicellular timer. Our analysis also shows the circuit to be easily tunable by varying the relative frequencies of the bacterial strains composing the consortium.

2017 ◽  
Author(s):  
Qinle Ba ◽  
Guruprasad Raghavan ◽  
Kirill Kiselyov ◽  
Ge Yang

In eukaryotic cells, lysosomes are distributed in the cytoplasm as individual membrane-bound compartments to degrade macromolecules and to control cellular metabolism. A fundamental yet unanswered question is whether and, if so, how individual lysosomes are spatially organized so that their functions can be coordinated and integrated to meet changing needs of cells. To address this question, we analyze their collective behavior in cultured cells using spatial statistical techniques. We find that in single cells, lysosomes maintain nonrandom, stable, yet distinct spatial distributions, which are mediated by the coordinated effects of the cytoskeleton and lysosomal biogenesis on different lysosomal subpopulations. Furthermore, we find that throughout the intracellular space, lysosomes form dynamic clusters that substantially increase their interactions with endosomes. Together, our findings reveal the spatial organization of lysosomes at the whole-cell scale and provide new insights into how organelle interactions are mediated and regulated over the entire intracellular space.


2018 ◽  
Vol 77 (5) ◽  
pp. 1262-1270 ◽  
Author(s):  
Sobia Ashraf ◽  
Muhammad Afzal ◽  
Khadeeja Rehman ◽  
Muhammad Naveed ◽  
Zahir Ahmad Zahir

Abstract Liquid effluent produced from tanning industries is loaded with organic and inorganic contaminants, particularly heavy metals, which may cause severe damage to the ecosystem. Constructed wetland (CW) is a promising product of the research in the field of ecological engineering which helps to overcome aquatic pollution. This investigation aims to develop a plant–endophyte synergism in CW for the efficient remediation of tannery effluent. In a vertical flow CW, Brachiaria mutica was vegetated and augmented with three endophytic bacterial strains. Results showed a reduction of 82% in COD, 94% in BOD5, and 95% in Cr by plant–endophyte synergism in CWs and it was significantly higher than the use of plants alone. Similarly, nutrients (N and P), lipids, ion content, SO42−, and Cl− showed similar reduction by the combined action of endophytes and B. mutica in CWs. The endophytes inoculation enhanced bacterial population in different compartments of the plants vegetated in CWs and the maximum was observed in the roots. This study revealed that plant–endophyte synergism in CWs can enhance the remediation of industrial wastewater.


2009 ◽  
Vol 75 (13) ◽  
pp. 4550-4556 ◽  
Author(s):  
Vicky G. Kastbjerg ◽  
Dennis S. Nielsen ◽  
Nils Arneborg ◽  
Lone Gram

ABSTRACT Listeria monocytogenes has a remarkable ability to survive and persist in food production environments. The purpose of the present study was to determine if cells in a population of L. monocytogenes differ in sensitivity to disinfection agents as this could be a factor explaining persistence of the bacterium. In situ analyses of Listeria monocytogenes single cells were performed during exposure to different concentrations of the disinfectant Incimaxx DES to study a possible population subdivision. Bacterial survival was quantified with plate counting and disinfection stress at the single-cell level by measuring intracellular pH (pHi) over time by fluorescence ratio imaging microscopy. pHi values were initially 7 to 7.5 and decreased in both attached and planktonic L. monocytogenes cells during exposure to sublethal and lethal concentrations of Incimaxx DES. The response of the bacterial population was homogenous; hence, subpopulations were not detected. However, pregrowth with NaCl protected the planktonic bacterial cells during disinfection with Incimaxx (0.0015%) since pHi was higher (6 to 6.5) for the bacterial population pregrown with NaCl than for cells grown without NaCl (pHi 5 to 5.5) (P < 0.05). The protective effect of NaCl was reflected by viable-cell counts at a higher concentration of Incimaxx (0.0031%), where the salt-grown population survived better than the population grown without NaCl (P < 0.05). NaCl protected attached cells through drying but not during disinfection. This study indicates that a population of L. monocytogenes cells, whether planktonic or attached, is homogenous with respect to sensitivity to an acidic disinfectant studied on the single-cell level. Hence a major subpopulation more tolerant to disinfectants, and hence more persistent, does not appear to be present.


2018 ◽  
Vol 79 ◽  
pp. 526-536 ◽  
Author(s):  
Prasenjit Debbarma ◽  
M.G.H. Zaidi ◽  
Saurabh Kumar ◽  
Shikha Raghuwanshi ◽  
Amit Yadav ◽  
...  

2016 ◽  
Vol 82 (7) ◽  
pp. 2210-2218 ◽  
Author(s):  
Cheng-Ying Jiang ◽  
Libing Dong ◽  
Jian-Kang Zhao ◽  
Xiaofang Hu ◽  
Chaohua Shen ◽  
...  

ABSTRACTThis paper describes the microfluidic streak plate (MSP), a facile method for high-throughput microbial cell separation and cultivation in nanoliter sessile droplets. The MSP method builds upon the conventional streak plate technique by using microfluidic devices to generate nanoliter droplets that can be streaked manually or robotically onto petri dishes prefilled with carrier oil for cultivation of single cells. In addition, chemical gradients could be encoded in the droplet array for comprehensive dose-response analysis. The MSP method was validated by using single-cell isolation ofEscherichia coliand antimicrobial susceptibility testing ofPseudomonas aeruginosaPAO1. The robustness of the MSP work flow was demonstrated by cultivating a soil community that degrades polycyclic aromatic hydrocarbons. Cultivation in droplets enabled detection of the richest species diversity with better coverage of rare species. Moreover, isolation and cultivation of bacterial strains by MSP led to the discovery of several species with high degradation efficiency, including fourMycobacteriumisolates and a previously unknown fluoranthene-degradingBlastococcusspecies.


2012 ◽  
Vol 610-613 ◽  
pp. 292-295 ◽  
Author(s):  
Lin Li ◽  
Chao Cheng Zhao ◽  
Qi You Liu ◽  
Yun Bo Zhang

The biodegradation abilities of 10 dibenzothiophene degrading microbial consortia isolated from contaminated soil were investigated. 5 highly efficient dibenzothiophene degrading bacterial strains were obtained from the consortium LKY10 by screening on LB-agar plates.The bacterial strain LKY10-5 reduced more than 90% of dibenzothiophene with 40 mg•L-1concentration, and had higher degradation efficiency than enriched bacterial consortia in 7 days of cultivation. According to species identification and phylogenetic analysis, strain LKY10-1 and LKY10-3 belonged to Actinobacteria and could be included in Rhodococcus and Cellulosimicrobium genus, LKY10-5 and LKY10-6 belonged to Proteobacteria and could be included in Pseudomonas and Devosia genus, and LKY10-13 could be included in Lysinibacillus genus and belonged to Firmicutes.


Rangifer ◽  
1998 ◽  
Vol 18 (2) ◽  
pp. 55 ◽  
Author(s):  
Monica Alterskjær Olsen ◽  
Svein Disch Mathiesen

Male reindeer (Rangifer tarandus tarandus) calves taken from a natural winter pasture were given ad lib. access to lichen (n = 3), timothy silage (n = 3) and hay (n = 3) for 7 weeks. Median numbers of viable anaerobic bacteria adherent to the plant particles (cells/g wet weight of rumen solids), growing on a habitat simulating medium (M8V), were significantly higher (P = 0.05) in the rumen of reindeer fed lichen (26.5 x 109- 53.0 x 109) and hay (4.0 x 109- 40.5 x 109), compared to reindeer fed silage (1.15 x 109 - 3.25 x 109). Anaerobic bacterial strains (n = 551) from the plant particles obtained from the rumen of the nine reindeer examined, were isolated using an acid swollen cellulose medium (M8SC) and tested for their ability to hydrolyse carboxymethyl cellulose (CMC). The proportion of CMC hydrolysing adherent bacteria isolated from M8SC was significantly higher in reindeer fed hay (21.5%) compared ro animals fed lichen (5.3%) and silage (2.7%) (P = 0.05). The CMC hydrolysing bacterial srrains (n=42) isolated from reindeer fed hay where characterised as non-cellulolytic Butyrivibrio fibrisolvens (9.5%), cellulolytic B. fibrisolvens (50.0%), Clostridium sp. (2.4%) and unknowns (38.1%), while CMC hydrolysing strains (n=11) isolated from animals fed lichen and strains (n=4) isolated from animals fed silage where all characterised as B. fibrisolvens. None of the bacterial strains isolated from the rumen solids of reindeer fed lichen or silage were found to be cellulolytic. This study suggests that both lichen and timothy silage have a negative influence, compared to hay, on the numbers of cellulolytic bacteria adherent to the plant particles in the rumen of reindeer.


Author(s):  
Nimrod Shteindel ◽  
Yoram Gerchman

Pseudomonas aeruginosa was shown previously to attack amoebae and other predators by adhering to them and injecting them with virulent substances. In this work, we show that an active, coordinated group behavior is enacted by the bacteria to utilize these molecular components, responding to both predator and bacterial population density.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3311
Author(s):  
Baichun Wu ◽  
Jingmin Deng ◽  
Hao Niu ◽  
Jiahao Liang ◽  
Muhammad Arslan ◽  
...  

In classical microbiology, developing a high-efficiency bacterial consortium is a great challenge for faster biodegradation of petroleum contaminants. In this study, a systematic experimental and mathematical procedure was adopted to establish a bacterial consortium for the effective biodegradation of heavy oil constituents. A total of 27 bacterial consortia were established as per orthogonal experiments, using 8 petroleum-degrading bacterial strains. These bacteria were closer phylogenetic relatives of Brevundimonas sp. Tibet-IX23 (Y1), Bacillus firmus YHSA15, B. cereus MTCC 9817, B. aquimaris AT8 (Y2, Y6 and Y7), Pseudomonas alcaligenes NBRC (Y3), Microbacterium oxydans CV8.4 (Y4), Rhodococcus erythropolis SBUG 2052 (Y5), and Planococcus sp. Tibet-IX21 (Y8), and were used in different combinations. Partial correlation analysis and a general linear model hereafter were applied to investigate interspecific relationships among different strains and consortia. The Y1 bacterial species showed a remarkable synergy, whereas Y3, Y4, and Y6 displayed a strong antagonism in all consortia. Inoculation ratios of different strains significantly influenced biodegradation. An optimal consortium was constructed with Y1, Y2, Y5, Y7, and Y8, which revealed maximum degradation of 11.238 mg/mL OD600 for oil contaminants. This study provides a line of evidence that a functional consortium can be established by mathematical models for improved bioremediation of petroleum-contaminated environment.


Author(s):  
Lumeshwari Sahu

Abstract: In this study, we isolated seven strains (termed BY1–7) from polluted soil at an oil station and evaluated their abilities to degrade total petroleum hydrocarbons (TPHs). Among 45 bacterial colonies one bacterial strain was identified based on the cultural, morphological and biochemical characteristics. The isolated bacterium was then subjected to a preliminary assessment of their crude oil after 48 hours of incubation on nutrient agar plates overlaid with 100 ML of petroleum crude oil, the zone of clearance was observed. The isolated bacteria showed 35% petrol degradation, whereas a relatively high oil degradation rate, almost 40% was observed when the bacterium was acclimatized. The selected bacterial strains crude oil resistance was analysed based on the growth ability on the crude oil containing mediums. This strain was identified as Brevibacterium brevis. After inoculation, growth ability was measured and the highest percentage of petrol degradation occurred at temperature 37 °C with the value 30.8%. Bacteria displaying such capabilities are often exploited for the bio-remediation of petroleum oil contaminated environments. Recently, microbial remediation technology has developed rapidly and achieved major gains. However, this technology is not omnipotent. It is affected by many environmental factors that hinder its practical application, limiting the large-scale application of the technology. Keywords: Petroleum hydrocarbon-degrading Bacteria, Petroleum oil, Bio-remediation, Bacterial consortia, Environmental factors, Enzymes.


Sign in / Sign up

Export Citation Format

Share Document