scholarly journals Establishing and Optimizing a Bacterial Consortia for Effective Biodegradation of Petroleum Contaminants: Advancing Classical Microbiology via Experimental and Mathematical Approach

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3311
Author(s):  
Baichun Wu ◽  
Jingmin Deng ◽  
Hao Niu ◽  
Jiahao Liang ◽  
Muhammad Arslan ◽  
...  

In classical microbiology, developing a high-efficiency bacterial consortium is a great challenge for faster biodegradation of petroleum contaminants. In this study, a systematic experimental and mathematical procedure was adopted to establish a bacterial consortium for the effective biodegradation of heavy oil constituents. A total of 27 bacterial consortia were established as per orthogonal experiments, using 8 petroleum-degrading bacterial strains. These bacteria were closer phylogenetic relatives of Brevundimonas sp. Tibet-IX23 (Y1), Bacillus firmus YHSA15, B. cereus MTCC 9817, B. aquimaris AT8 (Y2, Y6 and Y7), Pseudomonas alcaligenes NBRC (Y3), Microbacterium oxydans CV8.4 (Y4), Rhodococcus erythropolis SBUG 2052 (Y5), and Planococcus sp. Tibet-IX21 (Y8), and were used in different combinations. Partial correlation analysis and a general linear model hereafter were applied to investigate interspecific relationships among different strains and consortia. The Y1 bacterial species showed a remarkable synergy, whereas Y3, Y4, and Y6 displayed a strong antagonism in all consortia. Inoculation ratios of different strains significantly influenced biodegradation. An optimal consortium was constructed with Y1, Y2, Y5, Y7, and Y8, which revealed maximum degradation of 11.238 mg/mL OD600 for oil contaminants. This study provides a line of evidence that a functional consortium can be established by mathematical models for improved bioremediation of petroleum-contaminated environment.

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1964
Author(s):  
Alejandra Bartolomé ◽  
Gema Rodríguez-Moro ◽  
Juan-Luis Fuentes ◽  
Mariana Lopes ◽  
Juana Frontela ◽  
...  

Molecular and metabolomic tools were used to design and understand the biodegradation of phenolic compounds in real industrial streams. Bacterial species were isolated from an industrial wastewater treatment plant of a phenol production factory and identified using molecular techniques. Next, the biodegradation potential of the most promising strains was analyzed in the presence of a phenolic industrial by-product containing phenol, alfa-methylstyrene, acetophenone, 2-cumylphenol, and 4-cumylphenol. A bacterial consortium comprising Pseudomonas and Alcaligenes species was assessed for its ability to degrade phenolic compounds from the phenolic industrial stream (PS). The consortium adapted itself to the increasing levels of phenolic compounds, roughly up to 1750 ppm of PS; thus, becoming resistant to them. In addition, the consortium exhibited the ability to grow in the presence of PS in repeated batch mode processes. Results from untargeted metabolomic analysis of the culture medium in the presence of PS suggested that bacteria transformed the toxic phenolic compounds into less harmful molecules as a survival mechanism. Overall, the study demonstrates the usefulness of massive sequencing and metabolomic tools in constructing bacterial consortia that can efficiently biodegrade complex PS. Furthermore, it improves our understanding of their biodegradation capabilities.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2378
Author(s):  
Cristian Piras ◽  
Viviana Greco ◽  
Enrico Gugliandolo ◽  
Alessio Soggiu ◽  
Bruno Tilocca ◽  
...  

The environment, including animals and animal products, is colonized by bacterial species that are typical and specific of every different ecological niche. Natural and human-related ecological pressure promotes the selection and expression of genes related to antimicrobial resistance (AMR). These genes might be present in a bacterial consortium but might not necessarily be expressed. Their expression could be induced by the presence of antimicrobial compounds that could originate from a given ecological niche or from human activity. In this work, we applied (meta)proteomics analysis of bacterial compartment of raw milk in order to obtain a method that provides a measurement of circulating AMR involved proteins and gathers information about the whole bacterial composition. Results from milk analysis revealed the presence of 29 proteins/proteoforms linked to AMR. The detection of mainly β-lactamases suggests the possibility of using the milk microbiome as a bioindicator for the investigation of AMR. Moreover, it was possible to achieve a culture-free qualitative and functional analysis of raw milk bacterial consortia.


2015 ◽  
Vol 3 (1) ◽  
pp. 50-55 ◽  
Author(s):  
Amrik Bhattacharya ◽  
Anshu Gupta ◽  
Amarjeet Kaur ◽  
Darshan Malik

In the present study a consortium of four naturally isolated bacterial strains was evaluated as remediation tool for simultaneous removal ofphenol and Cr (VI) from tannery effluent. Application of bacterial consortia to effluent (pH 4.6) resulted in 100 and 78% removal of initial 47mg L-1 phenol and 16 mg L-1 Cr (VI), respectively at 96 h of treatment. The consortium was also active in removal of contaminants with lowerremoval rate in presence of extraneous higher concentrations of both phenol and Cr (VI). Treatment in static mode also resulted in removal ofpollutants, however with increase in agitation speed simultaneous reduction of contaminants becomes faster. Overall it can be inferred fromthe study that the above formulated bacterial consortium could effectively be used for treatment of phenol and Cr (VI) laden tannery and otherindustrial effluents.DOI: http://dx.doi.org/10.3126/ijasbt.v3i1.11889   Int J Appl Sci Biotechnol, Vol. 3(1): 50-55      


2012 ◽  
Vol 518-523 ◽  
pp. 44-47
Author(s):  
Li Hua Liang ◽  
Dai Di Fan ◽  
Liu Yang ◽  
Pei Ma ◽  
Xiao Li Zhu

Chromium(Ⅵ) is hazardous to environment. It can be efficiently removed by chromate resistant bacterial consortium. In this study five bacterial strains were isolated and cultured in liquid media containing Cr(Ⅵ) ions. The result shows that they grew better after culturing 24h than 48h and 72h. In the assay removing Cr(Ⅵ) by these strains, all of them presented excellent bioaccumulation abilities. When inital Cr(Ⅵ) ions concentration was 650mg/l, strain 2-7 displayed a best removal potential of 85.8% removal and 24.83 mg/g•h-1 uptake rate. However, it seemed that the resistance and the removal potential of heavy metal had no direct connection.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Marika Ziesack ◽  
Travis Gibson ◽  
John K. W. Oliver ◽  
Andrew M. Shumaker ◽  
Bryan B. Hsu ◽  
...  

ABSTRACT In nature, microbes interact antagonistically, neutrally, or beneficially. To shed light on the effects of positive interactions in microbial consortia, we introduced metabolic dependencies and metabolite overproduction into four bacterial species. While antagonistic interactions govern the wild-type consortium behavior, the genetic modifications alleviated antagonistic interactions and resulted in beneficial interactions. Engineered cross-feeding increased population evenness, a component of ecological diversity, in different environments, including in a more complex gnotobiotic mouse gut environment. Our findings suggest that metabolite cross-feeding could be used as a tool for intentionally shaping microbial consortia in complex environments. IMPORTANCE Microbial communities are ubiquitous in nature. Bacterial consortia live in and on our body and in our environment, and more recently, biotechnology is applying microbial consortia for bioproduction. As part of our body, bacterial consortia influence us in health and disease. Microbial consortium function is determined by its composition, which in turn is driven by the interactions between species. Further understanding of microbial interactions will help us in deciphering how consortia function in complex environments and may enable us to modify microbial consortia for health and environmental benefits.


2021 ◽  
Vol 9 (10) ◽  
pp. 2109
Author(s):  
Diogo Alexandrino ◽  
Ana Mucha ◽  
Maria Paola Tomasino ◽  
C. Marisa R. Almeida ◽  
Maria Carvalho

Epoxiconazole (EPO) and fludioxonil (FLU) are two widely used fluorinated pesticides known to be highly persistent and with high ecotoxicological potential, turning them into pollutants of concern. This work aimed to optimize two degrading bacterial consortia, previously obtained from an agricultural soil through enrichment with EPO and FLU, by characterizing the contribution of their corresponding bacterial isolates to the biodegradation of these pesticides using both culture-dependent and independent methodologies. Results showed that a co-culture of the strains Hydrogenophaga eletricum 5AE and Methylobacillus sp. 8AE was the most efficient in biodegrading EPO, being able to defluorinate ca. 80% of this pesticide in 28 days. This catabolic performance is likely the result of a commensalistic cooperation, in which H. eletricum may be the defluorinating strain and Methylobacillus sp. may assume an accessory, yet pivotal, catabolic role. Furthermore, 16S rRNA metabarcoding analysis revealed that these strains represent a minority in their original consortium, showing that the biodegradation of EPO can be driven by less abundant phylotypes in the community. On the other hand, none of the tested combinations of bacterial strains showed potential to biodegrade FLU, indicating that the key degrading strains were not successfully isolated from the original enrichment culture. Overall, this work shows, for the first time, the direct involvement of two bacterial species, namely H. eletricum and Methylobacillus sp., in the biodegradation of EPO, while also offering insight on how they might cooperate to accomplish this process. Moreover, the importance of adequate culture-dependent approaches in the engineering of microbial consortia for bioremediation purposes is also emphasized.


2018 ◽  
Author(s):  
Marika Ziesack ◽  
Travis Gibson ◽  
John K.W. Oliver ◽  
Andrew M. Shumaker ◽  
Bryan B. Hsu ◽  
...  

AbstractIn nature, microbes interact antagonistically, neutrally or beneficially. To shed light on the effects of positive interactions in microbial consortia we introduced metabolic dependencies and metabolite overproduction into four bacterial species. While antagonistic interactions govern the wildtype consortium behavior, the genetic modifications alleviated antagonistic interactions and resulted in beneficial interactions. Engineered cross-feeding increased population evenness, a component of ecological diversity, in different environments including in a more complex gnotobiotic mouse gut environment. Our findings suggest that metabolite cross-feeding could be used as a tool for intentionally shaping microbial consortia in complex environments.ImportanceMicrobial communities are ubiquitous in nature. Bacterial consortia live in and on our body and in our environment and more recently, biotechnology is applying microbial consortia for bioproduction. As part of our body, bacterial consortia influence us in health and disease. Microbial consortia function is determined by its composition, which in turn is driven by the interactions between species. Further understanding of microbial interactions will help us deciphering how consortia function in complex environments and may enable us to modify microbial consortia for health and environmental benefits.


2021 ◽  
Vol 9 (11) ◽  
pp. 2285
Author(s):  
Rafaela Perdigão ◽  
C. Marisa R. Almeida ◽  
Catarina Magalhães ◽  
Sandra Ramos ◽  
Ana L. Carolas ◽  
...  

This work aimed to develop a bioremediation product of lyophilized native bacteria to respond to marine oil spills. Three oil-degrading bacterial strains (two strains of Rhodococcus erythropolis and one Pseudomonas sp.), isolated from the NW Portuguese coast, were selected for lyophilization after biomass growth optimization (tested with alternative carbon sources). Results indicated that the bacterial strains remained viable after the lyophilization process, without losing their biodegradation potential. The biomass/petroleum ratio was optimized, and the bioremediation efficiency of the lyophilized bacterial consortium was tested in microcosms with natural seawater and petroleum. An acceleration of the natural oil degradation process was observed, with an increased abundance of oil-degraders after 24 h, an emulsion of the oil/water layer after 7 days, and an increased removal of total petroleum hydrocarbons (47%) after 15 days. This study provides an insight into the formulation and optimization of lyophilized bacterial agents for application in autochthonous oil bioremediation.


2020 ◽  
Vol 12 (12) ◽  
pp. 5156
Author(s):  
John Bright Joseph Njalam’mano ◽  
Evans Martin Nkhalambayausi Chirwa ◽  
Refilwe Lesego Seabi

The present study aims at developing an efficient bacterial consortium to biodegrade butyric acid, one of the odor-causing compounds that contribute significantly to pit latrine malodors. Six bacterial strains isolated from pit latrine fecal sludge were selected for the study. Nineteen bacterial consortia of different combinations were artificially constructed. The individual bacterial strains and bacterial consortia were compared by culturing in mineral salt medium supplemented with 1000 mg/L butyric acid as a sole carbon and energy source at pH 7, 30 °C, and 110 rpm under aerobic growth conditions. A co-culture of Serratia marcescens and Bacillus cereus was an effective bacterial consortium compared to individual component bacterial strains and other bacterial consortia, in which 1000 mg/L butyric acid was completely degraded within 16 h of incubation. A temperature of 30 °C and pH 7 were found to be optimum for the maximum degradation for both S. marcescens and B. cereus. The inoculation sizes of 2.0 and 2.5 were optimal for the maximum degradation for B. cereus and S. marcescens, respectively. The study provides insights that will be of substantial help in the development of effective biological treatment technologies for pit latrine odor to change the pit latrine user community’s and would be users’ perception of pit latrines.


2018 ◽  
Vol 16 (S1) ◽  
pp. S48-S54
Author(s):  
Y. Ez zoubi ◽  
S. Lairini ◽  
A. Farah ◽  
K. Taghzouti ◽  
A. El Ouali Lalami

The purpose of this study was to determine the chemical composition and to evaluate the antioxidant and antibacterial effects of the Moroccan Artemisia herba-alba Asso essential oil against foodborne pathogens. The essential oil of Artemisia herba-alba was analyzed by gas chromatography coupled with mass spectroscopy. The antibacterial activity was assessed against three bacterial strains isolated from foodstuff and three bacterial strains referenced by the ATCC (American Type Culture Collection) using the disk diffusion assay and the macrodilution method. The antioxidant activity was evaluated using the DPPH (2, 2-diphenyl-1- picrylhydrazyl) method. The fourteen compounds of the Artemisia herba-alba essential oil were identified; the main components were identified as β-thujone, chrysanthenone, α-terpineol, α-thujone, α-pinene, and bornyl acetate. The results of the antibacterial activity obtained showed a sensitivity of the different strains to Artemisia herba-alba essential oil with an inhibition diameter of 8.50 to 17.00 mm. Concerning the MICs (minimum inhibitory concentrations), the essential oil exhibited much higher antibacterial activity with MIC values of 2.5 μl/ml against Bacillus subtilis ATCC and Lactobacillus sp. The essential oil was found to be active by inhibiting free radicals with an IC50 (concentration of an inhibitor where the response is reduced by half) value of 2.9 μg/ml. These results indicate the possible use of the essential oil on food systems as an effective inhibitor of foodborne pathogens, as a natural antioxidant, and for potential pharmaceutical applications. However, further research is needed in order to determine the toxicity, antibacterial, and antioxidant effects in edible products.


Sign in / Sign up

Export Citation Format

Share Document