scholarly journals Winter wheat adapts to environmental pH by changing H+ net flux in roots at the seedling stage

2020 ◽  
Author(s):  
Guangtao Wang ◽  
Suwei Feng ◽  
Weihua Ding ◽  
Tiezhu Hu ◽  
Zhengang Ru

AbstractChanges in rhizosphere pH play an important role in wheat growth. To investigate the relationship between changes in rhizosphere pH and the growth of winter wheat roots and to explore the regulatory mechanism of acid and alkali resistance in winter wheat roots, the semi-winter wheat varieties Aikang 58 (AK58) and Bainong 4199 (BN4199) were used as materials for hydroponic experiments. Three pH levels (4.0, 6.5, and 9.0, with 6.5 as control) were applied during the wheat seedling stage. The results showed that the shoot and root biomass of the plants significantly decreased compared with the control under acid-base stress, with a more significant decrease with acid stress than alkali stress. Compared with the control, the root/shoot ratio increased under alkali stress and decreased under acid stress. The wheat root system showed H+ net efflux at pH 6.5 and 9.0, and the H+ net efflux rate at pH 4.0 was significantly lower than the control. The root activity of wheat was higher than the control at pH 9.0 and lower at pH4.0. The change of root pH was showed pH 4.0 < pH 6.5 < pH 9.0. Correlation analysis showed that changes in H+ net flux were significantly positively correlated to root activity and root pH. The H+ efflux rate and root activity of BN4199 were highe r than AK58 under acid and alkali stress, and the root/shoot ratio was relatively high, indicating strong acid and alkali resistance. We conclude that wheat could adapt to poor acid-base environments by adjusting root H+ net flux, and in practice, the root/shoot ratio could be used as index for the rapid determination of acid-base tolerance in wheat at the seedling stage.

2013 ◽  
Vol 21 (3) ◽  
pp. 282
Author(s):  
YanZhe WANG ◽  
XiuWei LIU ◽  
HongYong SUN ◽  
XiYing ZHANG ◽  
LianRui ZHANG

2010 ◽  
Vol 115 (2) ◽  
pp. 158-164 ◽  
Author(s):  
Shou-Chen Ma ◽  
Feng-Min Li ◽  
Bing-Cheng Xu ◽  
Zhan-Bin Huang

2013 ◽  
Vol 39 (12) ◽  
pp. 2228 ◽  
Author(s):  
Ye FENG ◽  
Feng GUO ◽  
Bao-Long LI ◽  
Jing-Jing MENG ◽  
Xin-Guo LI ◽  
...  

1997 ◽  
Vol 272 (2) ◽  
pp. R640-R647 ◽  
Author(s):  
O. A. Candia ◽  
T. Yorio

The amphibian skin represents an important organ for osmoregulation and, like the mammalian kidney, maintains acid-base balance by secreting protons or base. However, the lack of a reliable and accurate method to measure the contribution of unidirectional fluxes of HCO3- ions to this mechanism has been an obstacle for the determination of the role of bicarbonate in epithelial acid-base homeostasis. Recently, one of us developed a method that allows for the reliable determination of transepithelial fluxes of bicarbonate, and this method was applied to determine unidirectional fluxes of (14)CO2 and H(14)CO3 under a variety of conditions. We report that the combined CO2 and HCO3- mucosal-to-serosal flux under 5% CO2 was 40% larger than the opposing flux, giving a net flux in the mucosal-to-serosal direction. This net flux was inhibited by acetazolamide. In CO2-free conditions, there was no detectable net flux; however, acetazolamide and PGF(2alpha) attenuated the mucosal-to-serosal flux and established an apparent secretion of HCO3-. A model is presented that depicts twelve vectors or components to the CO2 plus HCO3- fluxes in the frog skin. This model can accurately reproduce the experimental values measured from unidirectional fluxes of CO2 and HCO3- under a variety of conditions and can explain the effects of PGF(2alpha) on unidirectional 14C-labeled fluxes as a consequence of inhibition of H+ secretion to the apical bath, similar to what was previously suggested by our laboratory using a different methodological approach. The present method, utilizing radiolabeled HCO3-, may be useful as a means to evaluate the mechanism of action of hormones and drugs that may regulate acid-base homeostasis by altering proton and bicarbonate transport processes.


1965 ◽  
Vol 7 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Miroslav Penka
Keyword(s):  

2021 ◽  
Author(s):  
Xuhui Zhou ◽  
Lingyan Zhou ◽  
Yanghui He ◽  
Yuling Fu ◽  
Zhenggang Du ◽  
...  

Abstract Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Recent studies suggest that climate warming can differentially affect root and shoot biomass, and subsequently alter root: shoot ratio. However, warming effects on root: shoot ratio and their underlying drivers at a global scale remain unclear. Using a global synthesis of >300 studies, we here show that warming significantly increases biomass allocation to roots (by 13.1%), and two factors drive this response: mean annual precipitation of the site, and the type of mycorrhizal fungi associated with a plant. Warming-induced allocation to roots is greater in relatively drier habitats compared to shoots (by 15.1%), but lower in wetter sites (by 4.9%), especially for plants associated with arbuscular mycorrhizal fungi compared to ectomycorrhizal fungi. Root-biomass responses to warming predominantly determine the biomass allocation in terrestrial plants suggesting that warming can reinforce the importance of belowground resource uptake. Our study highlights that the wetness or dryness of a site and plants’ mycorrhizal associations strongly regulate terrestrial carbon cycle by altering biomass allocation strategies in a warmer world.


2011 ◽  
Vol 35 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Fernanda Carlota Nery ◽  
Hilton Morbeck de Oliveira ◽  
Amauri Alves de Alvarenga ◽  
Sara Dousseau ◽  
Evaristo Mauro de Castro ◽  
...  

Ecophysiological studies under semi-controlled conditions in nurseries and greenhouses are essential to enable the use of native species to recover degraded areas and for commercial planting. Talisia subalbens (Mart) Radlk, 'cascudo', is a native fruiting species of the Cerrado on the verge of extinction. The ecophysiological performance of this species was evaluated in nursery conditions under different levels of shading (full sunshine, 30%, 50% and 70%). Initial growth, biomass allocation, gas exchange and chlorophyll content of the plants were analyzed. Full sunshine cultivated plants showed a higher accumulation of total, shoot, and root dry biomass. There was no significant difference in the root/shoot ratio among the treatments. Seedlings cultivated under full sunshine and 30% shading showed higher values for height, basal diameter, and leaf area. Differences in stomata conductance and photosynthesis rate were not observed among the different shading levels. Plants cultivated under 70% of shading had higher contents of chlorophyll a, b, and total. During the initial phase with higher levels of radiation were fundamental for the development of T. subalbens seedlings.


2015 ◽  
Vol 33 (1) ◽  
pp. 01-12 ◽  
Author(s):  
F.F. CORRÊA ◽  
R.H. MADAIL ◽  
S. BARBOSA ◽  
M.P. PEREIRA ◽  
E.M. CASTRO ◽  
...  

The objective of this work was to evaluate the effects of the population density of Typha angustifolia plants in the anatomical and physiological characteristics. Plants were collected from populations of high density (over 50% of colonization capacity) and low density (less than 50% of colonization capacity) and cultivated under controlled greenhouse conditions. Plants from both populations were grown in plastic trays containing 4 L of nutritive solution for 60 days. At the end of this period, the relative growth rate, leaf area ratio, net assimilatory rate, root/shoot ratio, leaf anatomy, root anatomy, and catalase and ascorbate peroxidase activities were evaluated. Plants from high density populations showed increased growth rate and root/shoot ratio. Low density populations showed higher values of stomatal index and density in leaves, as well as increased palisade parenchyma thickness. Root epidermis and exodermis thickness as well as the aerenchyma proportion of high density populations were reduced, these plants also showed increased vascular cylinder proportion. Only catalase activity was modified between the high and low density populations, showing increased values in low density populations. Therefore, different Typha angustifolia plants show differences in its anatomy and physiology related to its origins on high and low density conditions. High density population plants shows increased growth capacity related to lower apoplastic barriers in root and this may be related to increased nutrient uptake capacity.


Sign in / Sign up

Export Citation Format

Share Document