scholarly journals Transcriptional Network Orchestrating Regional Patterning of Cortical Progenitors

2020 ◽  
Author(s):  
Athéna R Ypsilanti ◽  
Kartik Pattabiraman ◽  
Rinaldo Catta-Preta ◽  
Olga Golonzhka ◽  
Susan Lindtner ◽  
...  

SUMMARYWe uncovered a transcription factor (TF) network that regulates cortical regional patterning. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1 and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer-gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning.

2021 ◽  
Vol 118 (51) ◽  
pp. e2024795118
Author(s):  
Athéna R. Ypsilanti ◽  
Kartik Pattabiraman ◽  
Rinaldo Catta-Preta ◽  
Olga Golonzhka ◽  
Susan Lindtner ◽  
...  

We uncovered a transcription factor (TF) network that regulates cortical regional patterning in radial glial stem cells. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1, and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer–gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning in the mouse.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 545-545
Author(s):  
Laura Belver ◽  
Alexander Y Yang ◽  
Daniel Herranz ◽  
Aidan Quinn ◽  
Francesco G Brundu ◽  
...  

Abstract Long range enhancers play critical roles in the control of gene expression during development and have emerged as key regulators of lineage commitment and oncogenic programs in hematopoiesis and leukemia. The MYC oncogene is dynamically regulated in the hematopoietic system under the control of a network of clustered distal enhancers, which provide modular regulation of MYC expression during lymphoid and myeloid development. In thymocyte development MYC transcription critically depends on the activity of N-Me, a distinct T-cell specific enhancer controlled by NOTCH1 signaling and located 1.4 Mb telomeric to the MYC transcription start site. Yet, the specific mechanisms governing N-Me enhancer activity and lineage specific control of MYC expression remain rudimentarily understood. Analysis of chromatin looping by 4C and chromatin accessibility by ATACseq revealed an unanticipated high density of chromatin contacts between N-Me and additional regulatory elements in the Myc locus and showed a distinct pattern of N-Me chromatin accessibility -opening as progenitors mature into T cell committed CD4 CD8 double negative (DN) 2b cells and returning to a closed configuration in CD4 CD8 double positive (DP) thymocytes-. To explore potential regulators of N-Me activity we performed Mass Spectrometry proteomic profiling of N-Me binding proteins and ChIPseq analyses identifying numerous factors involved in hematopoietic and lymphoid development (ERG, ETS1, GATA3, RUNX1, TCF3 and TCF12) and transcription factor oncogenes with prominent roles in the pathogenesis of T-ALL (HOXA9, MYB, MYC, LMO1, LMO2, TAL1 and TLX1). Moreover, phylogenetic footprinting analyses across vertebrate species identified two ultraconserved elements matching GATA factor binding motifs (GS1 and GS2). To test the functionality of these elements we introduced targeted mutations in the N-Me sequence at these sites using CRISPR/CAS9 directed mutagenesis. Mice homozygous for combined N-Me GS1 and GS2 mutations (GS1+2mut) revealed a marked defect in thymus cellularity with characteristic accumulation of DN and intermediate single positive (ISP) thymocytes and decreased numbers of more mature populations. Mechanistically, immunohistochemical, flow cytometry and single cell RNaseq analyses revealed decreased Myc protein levels in thymocyte poulations of GS1+2 mutant animals. In this context, we hypothesized that GATA3, a prominent N-Me binding transcription factor in our ChIP and proteomic analyses critically implicated in T-cell commitment, could play a major role in N-Me regulation via interaction with the GS1 and GS2 N-Me GATA sites. Consistent with this hypothesis analysis of Gata3 ChIPs from heterozygous GS1+2 mutant mice recovered only the N-Me wild type sequence, formally demonstrating the strict requirement of these sites for N-Me Gata3 binding. Mechanistically, ATACseq analysis revealed a marked reduction in chromatin accessibility and nucleosome invasion in thymocytes from GS1+2 mutant mice in support of a critical pioneering activity for GATA3 in the control of N-Me activity. Finally, given the important role of NOTCH1 induced MYC upregulation in the pathogenesis of T-ALL, we hypothesized that disruption of N-Me activity via targeted mutation of N-Me GATA sites could effectively impair the development of NOTCH1-driven T-ALL in N-Me GS1+2 mutant mice. To test this possibility we infected hematopoietic progenitors from N-Me wild type and N-Me GS1+2 homozygous mice with retroviruses driving the expression of an oncogenic constitutively active form of NOTCH1 (DE-NOTCH1) and transplanted them into sublethally irradiated recipients. In these experiments, mice transplanted with DE-NOTCH1 infected N-Me wild type cells developed overt T-ALL 6 weeks postransplant with 100% penetrance. In contrast, mice transplanted with DE-NOTCH1-expressing N-Me GS1+2 homozygous cells showed complete protection from NOTCH1 induced T-ALL (P <0.001). In all these results identify GATA3 binding to the N-Me enhancer as a critical driver of nucleosome eviction and enhancer activation strictly required for thymocyte development and NOTCH1-induced T-cell transformation. Disclosures No relevant conflicts of interest to declare.


Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 5087-5096 ◽  
Author(s):  
D. Caric ◽  
D. Gooday ◽  
R.E. Hill ◽  
S.K. McConnell ◽  
D.J. Price

The cerebral cortex forms by the orderly migration and subsequent differentiation of neuronal precursors generated in the proliferative ventricular zone. We studied the role of the transcription factor Pax-6, which is expressed in the ventricular zone, in cortical development. Embryos homozygous for a mutation of Pax-6 (Small eye; Sey) had abnormalities suggesting defective migration of late-born cortical precursors. When late-born Sey/Sey precursors were transplanted into wild-type embryonic rat cortex, they showed similar integrative, migrational and differentiative abilities to those of transplanted wild-type mouse precursors. These results suggest that postmitotic cortical cells do not need Pax-6 to acquire the capacity to migrate and differentiate, but that Pax-6 generates a cortical environment that permits later-born precursors to express their full developmental potential.


Pneumologie ◽  
2012 ◽  
Vol 66 (11) ◽  
Author(s):  
K Hoehne ◽  
H Eibel ◽  
M Grimm ◽  
M Idzko ◽  
J Müller-Quernheim ◽  
...  

Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1573-1581 ◽  
Author(s):  
Susanna Chou ◽  
Sukalyan Chatterjee ◽  
Mark Lee ◽  
Kevin Struhl

Abstract The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to &lt;1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haiwei Wang ◽  
Xinrui Wang ◽  
Liangpu Xu ◽  
Ji Zhang ◽  
Hua Cao

AbstractBased on isocitrate dehydrogenase (IDH) alterations, lower grade glioma (LGG) is divided into IDH mutant and wild type subgroups. However, the further classification of IDH wild type LGG was unclear. Here, IDH wild type LGG patients in The Cancer Genome Atlas and Chinese Glioma Genome Atlas were divided into two sub-clusters using non-negative matrix factorization. IDH wild type LGG patients in sub-cluster2 had prolonged overall survival and low frequency of CDKN2A alterations and low immune infiltrations. Differentially expressed genes in sub-cluster1 were positively correlated with RUNX1 transcription factor. Moreover, IDH wild type LGG patients with higher stromal score or immune score were positively correlated with RUNX1 transcription factor. RUNX1 and its target gene REXO2 were up-regulated in sub-cluster1 and associated with the worse prognosis of IDH wild type LGG. RUNX1 and REXO2 were associated with the higher immune infiltrations. Furthermore, RUNX1 and REXO2 were correlated with the worse prognosis of LGG or glioma. IDH wild type LGG in sub-cluster2 was hyper-methylated. REXO2 hyper-methylation was associated with the favorable prognosis of LGG or glioma. At last, we showed that, age, tumor grade and REXO2 expression were independent prognostic factors in IDH wild type LGG.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


2020 ◽  
Author(s):  
Maik Hintze ◽  
Sebastian Griesing ◽  
Marion Michels ◽  
Birgit Blanck ◽  
Lena Wischhof ◽  
...  

AbstractWe investigated the contribution of apoptosis-inducing factor (AIF), a key regulator of mitochondrial biogenesis, in supporting hair growth. We report that pelage abnormalities developed during hair follicle (HF) morphogenesis in Harlequin (Hq) mutant mice. Fragility of the hair cortex was associated with decreased expression of genes encoding structural hair proteins, though key transcriptional regulators of HF development were expressed at normal levels. Notably, Aifm1 (R200 del) knockin males and Aifm1(R200 del)/Hq females showed minor hair defects, despite substantially reduced AIF levels. Furthermore, we cloned the integrated ecotropic provirus of the Aifm1Hq allele. We found that its overexpression in wild-type keratinocyte cell lines led to down-regulation of HF-specific Krt84 and Krtap3-3 genes without altering Aifm1 or epidermal Krt5 expression. Together, our findings imply that pelage paucity in Hq mutant mice is mechanistically linked to severe AIF deficiency and is associated with the expression of retroviral elements that might potentially influence the transcriptional regulation of structural hair proteins.


2009 ◽  
Vol 284 (12) ◽  
pp. 8073-8082 ◽  
Author(s):  
Anna Saramäki ◽  
Sarah Diermeier ◽  
Ruth Kellner ◽  
Heidi Laitinen ◽  
Sami Vaïsänen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document