scholarly journals Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia

2020 ◽  
Author(s):  
Dilli Prasad Rijal ◽  
Peter D. Heintzman ◽  
Youri Lammers ◽  
Nigel G. Yoccoz ◽  
Kelsey Erin Lorberau ◽  
...  

The effects of climate change on species richness is debated but can be informed by the past. Here, we assess the impact of Holocene climate changes and nutrients on terrestrial plant richness across multiple sites from northern Fennoscandia using new sedimentary ancient DNA (sedaDNA) data quality control methods. We find that richness increased steeply during the rapidly warming Early Holocene. In contrast to findings from most pollen studies, we show that richness continued to increase through the Middle to Late Holocene even though temperature decreased, with the regional species pool only stabilizing during the last two millennia. Furthermore, overall increase in richness was greater in catchments with higher soil nutrient availability. We suggest that richness will rapidly increase with ongoing warming, especially at localities with high nutrient availability and even in the absence of increased human activity in the region, although delays of millennia may be expected.

2021 ◽  
Vol 7 (31) ◽  
pp. eabf9557
Author(s):  
Dilli P. Rijal ◽  
Peter D. Heintzman ◽  
Youri Lammers ◽  
Nigel G. Yoccoz ◽  
Kelsey E. Lorberau ◽  
...  

The effects of climate change on species richness are debated but can be informed by the past. Here, we generated a sedimentary ancient DNA dataset covering 10 lakes and applied novel methods for data harmonization. We assessed the impact of Holocene climate changes and nutrients on terrestrial plant richness in northern Fennoscandia. We find that richness increased steeply during the rapidly warming Early Holocene. In contrast to findings from most pollen studies, we show that richness continued to increase thereafter, although the climate was stable, with richness and the regional species pool only stabilizing during the past three millennia. Furthermore, overall increases in richness were greater in catchments with higher soil nutrient availability. We suggest that richness will increase with ongoing warming, especially at localities with high nutrient availability and assuming that human activity remains low in the region, although lags of millennia may be expected.


Author(s):  
Adrien Oliva ◽  
Raymond Tobler ◽  
Alan Cooper ◽  
Bastien Llamas ◽  
Yassine Souilmi

Abstract The current standard practice for assembling individual genomes involves mapping millions of short DNA sequences (also known as DNA ‘reads’) against a pre-constructed reference genome. Mapping vast amounts of short reads in a timely manner is a computationally challenging task that inevitably produces artefacts, including biases against alleles not found in the reference genome. This reference bias and other mapping artefacts are expected to be exacerbated in ancient DNA (aDNA) studies, which rely on the analysis of low quantities of damaged and very short DNA fragments (~30–80 bp). Nevertheless, the current gold-standard mapping strategies for aDNA studies have effectively remained unchanged for nearly a decade, during which time new software has emerged. In this study, we used simulated aDNA reads from three different human populations to benchmark the performance of 30 distinct mapping strategies implemented across four different read mapping software—BWA-aln, BWA-mem, NovoAlign and Bowtie2—and quantified the impact of reference bias in downstream population genetic analyses. We show that specific NovoAlign, BWA-aln and BWA-mem parameterizations achieve high mapping precision with low levels of reference bias, particularly after filtering out reads with low mapping qualities. However, unbiased NovoAlign results required the use of an IUPAC reference genome. While relevant only to aDNA projects where reference population data are available, the benefit of using an IUPAC reference demonstrates the value of incorporating population genetic information into the aDNA mapping process, echoing recent results based on graph genome representations.


2021 ◽  
Vol 13 (4) ◽  
pp. 2226
Author(s):  
Joisman Fachini ◽  
Thais Rodrigues Coser ◽  
Alyson Silva de Araujo ◽  
Ailton Teixeira do Vale ◽  
Keiji Jindo ◽  
...  

The thermochemical transformation of sewage sludge (SS) to biochar (SSB) allows exploring the advantages of SS and reduces possible environmental risks associated with its use. Recent studies have shown that SSB is nutrient-rich and may replace mineral fertilizers. However, there are still some questions to be answered about the residual effect of SSB on soil nutrient availability. In addition, most of the previous studies were conducted in pots or soil incubations. Therefore, the residual effect of SSB on soil properties in field conditions remains unclear. This study shows the results of nutrient availability and uptake as well as maize yield the third cropping of a three-year consecutive corn cropping system. The following treatments were compared: (1) control: without mineral fertilizer and biochar; (2) NPK: with mineral fertilizer; (3) SSB300: with biochar produced at 300 °C; (4) SSB300+NPK; (5) SSB500: with biochar produced at 500 °C; and (6) SSB500+NPK. The results show that SSB has one-year residual effects on soil nutrient availability and nutrient uptake by maize, especially phosphorus. Available soil P contents in plots that received SSB were around five times higher than the control and the NPK treatments. Pyrolysis temperature influenced the SSB residual effect on corn yield. One year after suspending the SSB application, SSB300 increased corn yield at the same level as the application of NPK. SSB300 stood out and promoted higher grain yield in the residual period (8524 kg ha−1) than SSB500 (6886 kg ha−1). Regardless of pyrolysis temperature, biochar boosted the mineral fertilizer effect resulting in higher grain yield than the exclusive application of NPK. Additional long-term studies should be focused on SSB as a slow-release phosphate fertilizer.


2021 ◽  
Author(s):  
Amanda E. Knauf ◽  
Creighton M. Litton ◽  
Rebecca J. Cole ◽  
Jed P. Sparks ◽  
Christian P. Giardina ◽  
...  

Pedosphere ◽  
2016 ◽  
Vol 26 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Adel Rabie A. USMAN ◽  
Mohammad I. AL-WABEL ◽  
Yong S. OK ◽  
Abdulaziz AL-HARBI ◽  
Mahmoud WAHB-ALLAH ◽  
...  

2012 ◽  
Vol 82 ◽  
pp. 37-42 ◽  
Author(s):  
Priit Kupper ◽  
Gristin Rohula ◽  
Liina Saksing ◽  
Arne Sellin ◽  
Krista Lõhmus ◽  
...  

1974 ◽  
Vol 4 (4) ◽  
pp. 530-535 ◽  
Author(s):  
Edwin H. White

This paper reports the effects of whole-tree harvesting of eight cottonwood stands on the soil nutrient pool. The data indicate possible site degradation by depletion of soil reserves of N, P, and K but not Ca and Mg on a range of alluvial site conditions in Alabama. Foresters must establish the rate of nutrient removal in intensive tree cropping systems for a variety of species and sites and develop prescriptions to minimize the impact.


Sign in / Sign up

Export Citation Format

Share Document