scholarly journals Handling and accuracy of four rapid antigen tests for the diagnosis of SARS-CoV-2 compared to RT-qPCR

Author(s):  
Flaminia Olearo ◽  
Dominik Nörz ◽  
Fabian Heinrich ◽  
Jan Peter Sutter ◽  
Kevin Rödel ◽  
...  

AbstractBackgroundSARS-CoV-2 molecular diagnostics is facing material shortages and long turnaround times due to exponential increase of testing demand.ObjectiveWe evaluated the analytic performance and handling of four rapid Antigen Point of Care Tests (AgPOCTs) I-IV (Distributors: (I) Roche, (II) Abbott, (III) MEDsan and (IV) Siemens).Methods100 RT-PCR negative and 84 RT-PCR positive oropharyngeal swabs were prospectively collected and used to determine performance and accuracy of these AgPOCTs. Handling was evaluated by 10 healthcare workers/users through a questionnaire.ResultsThe median duration from symptom onset to sampling was 6 days (IQR 2-12 days). The overall relative sensitivity was 49.4%, 44.6%, 45.8% and 54.9 % for tests I, II, III and IV, respectively. In the high viral load subgroup (containing >106 copies of SARS-CoV-2 /swab, n=26), AgPOCTs reached sensitivities of 92.3% or more (range 92.3%-100%). Specificity was 100% for tests I, II and IV and 97% for test III. Regarding handling, test I obtained the overall highest scores, while test II was considered to have the most convenient components. Of note, users considered all assays, with the exception of test I, to pose a significant risk for contamination by drips or spills.DiscussionBesides some differences in sensitivity and handling, all four AgPOCTs showed acceptable performance in high viral load samples. However, due to the significantly lower sensitivity compared to RT-qPCR, a careful consideration of pro and cons of AgPOCT has to be taken into account before clinical implementation.

2021 ◽  
Vol 8 ◽  
Author(s):  
Mohammad Alghounaim ◽  
Hamad Bastaki ◽  
Farah Bin Essa ◽  
Hoda Motlagh ◽  
Salman Al-Sabah

Background: SARS-CoV-2 antigen assays offer a rapid mean to diagnose and isolate infected individuals. However, their utility in population-level screening is unknown.Objectives: The performance of two antigen tests in detecting SARS-CoV-2 was assessed among individuals randomly selected in the community.Study Design: A prospective study that performed head-to-head comparison of two SARS-CoV-2 antigen assays. Individuals were recruited during community SARS-CoV-2 screening over 10 working days. Demographic and clinical data were collected. Standard Q COVID-19 Ag test, a point-of-care chromatographic assay, was conducted immediately, and then the sample was transported to the virology laboratory to perform PCR and the LIAISON SARS-CoV-2 Ag chemiluminesence immunoassay.Results: respiratory samples from 991 individuals were collected, and 62 were positive by PCR. Inconclusive PCR results were observed in 19 samples and were excluded. The median age of participants was 40.2 years (IQR 32.3–47.8), and 932 (94%) were males. Most (77.4%) of infections were asymptomatic. The sensitivity and the specificity of the LIAISON assay were 43.3% (95%CI 30.6–56.8) and 99.9% (95%CI 99.3–100). The Standard Q assay had lower sensitivity (30.6%, 95%CI 19.6–43.7) but similar specificity (98.8%, 95%CI, 97.8–99.4). Similarly, the LIAISON assay had higher positive predictive value (96.3%, 95%CI 81–99.9% vs. 63.3%, 95%CI, 43.9–80.1%). Both assays performed better in symptomatic patients and among samples with a low-cycle threshold (Ct < 25).Conclusion: In our setting of random community surveillance, rapid antigen testing of nasopharyngeal swabs by either LIAISON SARS-CoV-2 Ag (DiaSorin) or Standard Q COVID-19 Ag (SD Biosensor) was less sensitive to detecting SARS-CoV-2 than the TaqPath COVID-19 RT-PCR.


2021 ◽  
Author(s):  
Laura Ford ◽  
Melissa J. Whaley ◽  
Melisa M. Shah ◽  
Phillip P. Salvatore ◽  
Hannah E. Segaloff ◽  
...  

Background: Performance characteristics of SARS-CoV-2 antigen tests among children are limited despite the need for point-of-care testing in school and childcare settings. We describe children seeking SARS-CoV-2 testing at a community site and compare antigen test performance to real-time reverse transcription-polymerase chain reaction (RT-PCR) and viral culture. Methods: Two anterior nasal specimens were self-collected for BinaxNOW antigen and RT-PCR testing, along with demographics, symptoms, and exposure information from individuals ≥5 years at a community testing site. Viral culture was attempted on residual antigen or RT-PCR positive specimens. Demographic and clinical characteristics, and the performance of SARS-CoV-2 antigen tests, were compared among children (<18 years) and adults. Results: About one in ten included specimens were from children (225/2110); 16.4% (37/225) were RT-PCR positive. Cycle threshold values were similar among RT-PCR positive specimens from children and adults (22.5 vs 21.3, p=0.46) and among specimens from symptomatic and asymptomatic children (22.5 vs 23.2, p=0.39). Sensitivity of antigen test compared to RT-PCR was 73.0% (27/37) among specimens from children and 80.8% (240/297) among specimens from adults; among specimens from children, specificity was 100% (188/188), positive and negative predictive value were 100% (27/27) and 94.9% (188/198) respectively. Virus was isolated from 51.4% (19/37) of RT-PCR positive pediatric specimens; all 19 had positive antigen test results. Conclusions : With lower sensitivity relative to RT-PCR, antigen tests may not diagnose all positive COVID-19 cases; however, antigen testing identified children with live SARS-CoV-2 virus.


2020 ◽  
Author(s):  
Johannes Hayer ◽  
Dusanka Kasapic ◽  
Claudia Zemmrich

AbstractBackgroundImmunochromatographic rapid antigen tests (RATs) emerged onto the COVID-19 pandemic testing landscape to aid in the rapid diagnosis of people with suspected SARS-CoV-2 infection. RATs are particularly useful where RT-PCR is not immediately available and symptoms suggestive of a high viral load and infectiousness are assumed. Several lateral flow immunoassays have been authorized for use under EUA and/or the CE mark, presenting varying overall clinical performance data generated by the manufacturer or by independent investigators. To compare the real-world clinical performance of commercially available rapid chromatographic immunoassays intended for the qualitative detection of SARS-CoV-2, we performed a systematic meta-analysis of published data.MethodsWe searched the MEDLINE®, Embase, BIOSIS and Derwent Drug File (ProQuest)for manufacturer-independent prospective clinical performance studies comparing SARS-CoV-2 RATs and RT-PCR assays. Only studies on lateral flow assays not needing a separate reader for retrieving the result were included, if data were available on viral load, patients’ symptom status, sample type, and PCR assay used. For better data comparability, recalculation of the studies’ single performance data confidence intervals using the exact Clopper–Pearson method was applied.ResultsWe could include 19 studies (ten peer-reviewed) presenting detailed clinical performance data on 11,209 samples with 2449 RT-PCR-positives out of study prevalence rates between 1.9–100 % and between 50– 100% symptomatic samples. Four studies directly compared two to three different RATs and 15 studies compared one RAT to RT-PCR. Overall specificity ranged, with one test outlier, between 92.4% (87.4– 95.9) and 100% (99.7–100), and overall clinical sensitivity varied between 28.9% (16.4–44.3) and 98.3% (91.1–99.7), depending on assay, population characteristics, viral load, and symptom status. Sensitivity in high-viral-load samples (cycle threshold ≤25) showed a considerable heterogeneity among the assays ranging from 66.7% to 100%.ConclusionOnly two RATs offered sufficient manufacturer-independent, real-world performance data supporting use for the detection of current SARS-CoV-2 infection in symptomatic or high-viral-load patient populations. Reliable positive predictive values require testing of symptomatic patients or asymptomatic individuals only in case of a high pre-test probability. If RATs are used for screening of asymptomatic cases in low-prevalence scenarios, a lower positive predictive value of the result has to be considered.


2021 ◽  
Author(s):  
Zulema Pérez-Martínez ◽  
Gabriel Martín ◽  
Marta Sandoval ◽  
Susana Rojo-Alba ◽  
Jose Antonio Boga ◽  
...  

Abstract Fast sensitive techniques are advisable for SARS-CoV-2 detection. Various rapid SARS-CoV-2 antigen detection tests have been developed, but type and quality of the sample, stage of the disease and viral load can all have an impact on their sensitivity. For this study, a total of 486 swabs were processed and checked with various commercially available tests, and then compared with q(RT)-PCR (the gold-standard method). Total sensitivity varied considerably, for example, 42.10% (nal von minden and Tody Laboratories), 68.42% (Cahnos) and 84.78% (PCL). Sensitivity reached 100% when cycle threshold (Ct) was lower than 22 in almost all tests, although this dropped considerably when Ct was higher above 30, where only three tests identified 40% or more positive samples and in 5 cases it was 0%. What is more, only two cases were 100% accurate when viral load was higher than 5 log/103 cells and accuracy was 0% in 12 cases where viral load was lower than 4 log/103 cells. These results, particularly taking into consideration the fact they used normalized viral load, suggest that antigen detection tests have their role in the fast triage of positive patients, but that considerable care should be taken with negative results, which is even more important if they are used for massive screening.


2021 ◽  
Author(s):  
P Debishree Subudhi ◽  
Sheetalnath Rooge ◽  
Swati Thangriyal ◽  
Reshu Aggarwal ◽  
Ekta Gupta ◽  
...  

Background: There is a prolonged RT PCR positivity seen in COVID-19 infected patients up to 2 to 3 months. It is assumed that this virus is usually non-infective but there are hardly any study on the reactivation of this virus within the respiratory tract. We aim to investigate the presence of viral particles inside Extracellular vesicles (EV) and its role in underlying liver disease patients. Methods: SARS CoV2 nasal and throat swab RT-PCR positive n=78 {n=24(66.6%) chronic liver disease (CLD); n=52 (81.3%) non liver disease} n=5 RT PCR negative subjects (HC) were studied. SARS CoV2 patients were also followed up for day (d) 7, 14 and 28. Nasal swab [collected in viral transport media (VTM)] and plasma samples were investigated at each time point. Extracellular vesicles were isolated using differential ultracentrifugation. SARS CoV2 RNA was measured using qRT-PCR by Altona Real Star kit. Cellular origin of EV was confirmed using epithelial cells (Epcam+ CK19+ CDh1+), endothelial cells (CD31+CD45-), and hepatocytes (ASGPR+) surface markers by Flow cytometry. Results: The COVID19 patients {Mean age 54±23 years; 41 males} were having severity between moderate to severe. In patients with cirrhosis, the most common aetiology of liver disease was alcohol (MELD 22±8). In baseline RT-PCR positive patients, SARS-CoV2 RNA inside the EV was present in 64/74 (82%) patients with comparable viral load between VTM and EV (mean 1/CT 0.033±0.005 vs. 1/CT 0.029±0.014, p=ns). On follow-up at day 7, of the 24 patients negative for COVID19, 10 (41%) had persistence of virus in the EV (1/CT 0.028±0.004) and on day 14, 14 of 40 (35%) negative RT-PCR had EVs with SARS CoV2 RNA (1/CT 0.028±0.06). The mean viral load decreased at day7 and day14 in nasal swab from baseline (p=0.001) but not in EV. SARS-CoV2 RNA otherwise undetectable in plasma, was found to be positive in EV in 12.5% of COVID19 positive patients. Interestingly, significantly prolonged and high viral load was found in EV at day 14 in CLD COVID19 patients compared to COVID19 alone (p=0.002). The high cellular injury was seen in CLD COVID19 infected patients with significant high levels of EV associated with endothelial cells and hepatocytes than COVID19 alone (p=0.004; 0.001). Conclusion: Identification of SARS-CoV2 RNA in EV, in RT-PCR negative patients indicates persistence of infection for and likely recurrence of the infection. It is suggestive of another route of transmission as EV harbour SARS CoV2 RNA. EV associated RNA may determine the ongoing inflammation and clinical course of subjects with undetectable SARS-CoV2 virus and this may also have relevance in management of chronic liver disease patients.


2021 ◽  
Author(s):  
Vanessa De Pace ◽  
Patrizia Caligiuri ◽  
Valentina Ricucci ◽  
Nicola Nigro ◽  
Barbara Galano ◽  
...  

Abstract Background: The ongoing pandemic of SARS-CoV-2 requires the availability of accurate and rapid diagnostic tests, especially in some clinical settings like emergency and intensive care units. The objective of this study was to evaluate the diagnostic performances of rapid PCR kit Vivalytic SARS-CoV-2 in lower respiratory tract (LRT) specimens.Methods: A consecutive sample of LRT specimens (bronchoalveolar lavage and bronchoaspirates) was collected from Intensive Care Units of San Martino Hospital (Genoa, Italy) between November 2020 and January 2021. All samples were tested in RT-PCR by using Allplex™ SARS-CoV-2 assay (Seegene Inc., South Korea). Based on RT-PCR results, specimens were categorized into negative, positive with high viral load [cycle threshold (Ct) ≤30] and positive with low viral load (Ct of 31–35). A quota 1:1:1 sampling was used to achieve a sample size of 75. Then, all specimens were tested in the rapid PCR assay Vivalytic SARS-CoV-2 (Bosch Healthcare Solutions GmbH, Germany). The diagnostic performance of the rapid PCR against RT-PCR was assessed through calculation of accuracy, Cohen’s κ, sensitivity, specificity and expected positive (PPV) and negative (NPV) predictive values.Results: The overall diagnostic accuracy of the Vivalytic SARS-CoV-2 was 97.3% (95% CI: 90.9–99.3%) with an excellent Cohen’s κ of 0.94 (95% CI: 0.72–1). The sensitivity and specificity were 96% (95% CI: 86.5–98.9%) and 100% (95% CI: 86.7–100%), respectively. Samples with high viral loads had a sensitivity of 100% (Table 1). The distributions of E gene Ct values were similar (Wilcoxon’s test: P=0.070) with medians of 35 (IQR: 25–36) and 35 (IQR: 25–35), respectively (Figure 1). NPV and PPV was 92.6% and 100%, respectively.Conclusions: This study shows Vivalytic SARS-CoV-2 can be used following the sample liquefaction on LRT specimens. It’s a feasible and highly accurate molecular procedure especially in high viral load samples. This assay allows having a result in about 40 min and therefore may accelerate the clinical decision making in urgent/emergency situations.


2021 ◽  
Author(s):  
Isabell Wagenhaeuser ◽  
Kerstin Knies ◽  
Vera Rauschenberger ◽  
Michael Eisenmann ◽  
Miriam McDonogh ◽  
...  

Background Antigen rapid diagnostic tests (RDT) for SARS-CoV-2 are fast, broadly available, and inexpensive. Despite this, reliable clinical performance data is sparse. Methods In a prospective performance evaluation study, RDT from three manufacturers (NADAL, Panbio, MEDsan) were compared to quantitative reverse transcription polymerase chain reaction (RT-qPCR) in 5 068 oropharyngeal swabs for detection of SARS-CoV-2 in a hospital setting. Viral load was derived from standardized RT-qPCR Cycle threshold (Ct) values. The data collection period ranged from November 12, 2020 to February 28, 2021. Findings Overall, sensitivity of RDT compared to RT-qPCR was 42.57% (95% CI 33.38%-52.31%), and specificity 99.68% (95% CI 99.48%-99.80%). Sensitivity declined with decreasing viral load from 100% in samples with a deduced viral load of 10^8 SARS-CoV-2 RNA copies per ml to 8.82% in samples with a viral load lower than 104 SARS-CoV-2 RNA copies per ml. No significant differences in sensitivity or specificity could be observed between the three manufacturers, or between samples with and without spike protein variant B.1.1.7. The NPV in the study cohort was 98.84%; the PPV in persons with typical COVID-19 symptoms was 97.37%, and 28.57% in persons without or with atypical symptoms. Interpretation RDT are a reliable method to diagnose SARS-CoV-2 infection in persons with high viral load. RDT are a valuable addition to RT-qPCR testing, as they reliably detect infectious persons with high viral loads before RT-qPCR results are available. Funding German Federal Ministry for Education and Science (BMBF), Free State of Bavaria


2021 ◽  
Author(s):  
Mohammad Jahidur Rahman Khan ◽  
Md. Shahadat Hossain ◽  
Samshad Jahan Shumu ◽  
Md. Selim Reza ◽  
Farzana Mim ◽  
...  

Abstract Background: While the COVID-19 pandemic is a worldwide crisis, tests with high sensitivity and specificity are essential for identifying and managing COVID-19 patients. Globally, several rapid antigen tests RATs for COVID-19 have been developed, but their clinical efficacy has not been well established. This study aimed to evaluate the performance of several rapid antigen tests (RATs) to diagnose SARS-CoV-2 infection.Methods: This prospective observational study was conducted at Shaheed Suhrawardy Medical College hospital from February 2021 to April 2021 in Dhaka, Bangladesh. This study included the patients admitted in this hospital at the COVID-19 isolation unit or referred from the triage facility of the outdoor department of this hospital suspected as COVID-19 case. Two nasopharyngeal samples were collected simultaneously. one sample was used on the spot for the RAT. The other was sent to the adjacent Shaheed Suhrawardy Medical College COVID-19 RT-PCR laboratory for real-time reverse transcription-polymerase chain reaction (qRT-PCR). The performance of the RAT was evaluated using the results of qRT-PCR as a reference.Results: A total of 223 patients were included in this study, and the real-time RT-PCR detected SARS-CoV-2 in 84 (37.7%) patients. Of these 84 patients, 9 (10.7%) were asymptomatic. The overall sensitivity and specificity of RATs were 78.6% and 99.3%, respectively. The sensitivity was 81.3% in symptomatic cases and 55.6% in asymptomatic cases. False-negatives were observed in 18 patients, 3 of whom were asymptomatic and had a low viral load (cycle threshold (Ct) > 30). The detection rate of RATs was 100% when the Ct value was up to 24. The detection rate was 42.3% when the Ct was >29. The detection rate of RATs was 92.3% when the onset of symptoms was within three days. The detection rate was 33.3% when the onset of symptoms was >7 days.Conclusions: RATs for COVID-19 used in this study delivered an acceptable performance in patients with high viral load and within the first week of the onset of symptoms. They can be used as a supplementary method to RT-PCR for the diagnosis of COVID-19 patients.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2071
Author(s):  
Marcello Lanari ◽  
Giovanni Battista Biserni ◽  
Matteo Pavoni ◽  
Eva Caterina Borgatti ◽  
Marta Leone ◽  
...  

The gold standard for diagnosis of SARS-CoV-2 infection has been nucleic acid amplification tests (NAAT). However, rapid antigen detection kits (Ag-RDTs), may offer advantages over NAAT in mass screening, generating results in minutes, both as laboratory-based test or point-of-care (POC) use for clinicians, at a lower cost. We assessed two different POC Ag-RDTs in mass screening versus NAAT for SARS-CoV-2 in a cohort of pediatric patients admitted to the Pediatric Emergency Unit of IRCCS—Polyclinic of Sant’Orsola, Bologna (from November 2020 to April 2021). All patients were screened with nasopharyngeal swabs for the detection of SARS-CoV-2-RNA and for antigen tests. Results were obtained from 1146 patients. The COVID-19 Ag FIA kit showed a baseline sensitivity of 53.8% (CI 35.4–71.4%), baseline specificity 99.7% (CI 98.4–100%) and overall accuracy of 80% (95% CI 0.68–0.91); the AFIAS COVID-19 Ag kit, baseline sensitivity of 86.4% (CI 75.0–93.9%), baseline specificity 98.3% (CI 97.1–99.1%) and overall accuracy of 95.3% (95% CI 0.92–0.99). In both tests, some samples showed very low viral load and negative Ag-RDT. This disagreement may reflect the positive inability of Ag-RDTs of detecting antigen in late phase of infection. Among all cases with positive molecular test and negative antigen test, none showed viral loads > 106 copies/mL. Finally, we found one false Ag-RDTs negative result (low cycle thresholds; 9 × 105 copies/mL). Our results suggest that both Ag-RDTs showed good performances in detection of high viral load samples, making it a feasible and effective tool for mass screening in actively infected children.


Author(s):  
Michela Deiana ◽  
Chiara Piubelli ◽  
Antonio Mori ◽  
Gian Paolo Chiecchi ◽  
Giulia La Marca ◽  
...  

Background: The reference test for SARS-CoV-2 detection is the reverse transcriptase real time PCR (real time RT-PCR). However, evidences reported that real time RT-PCR has a lower sensitivity compared with the droplet digital PCR (ddPCR) leading to possible false negative in low viral load cases. Methods: We used ddPCR for viral genes N1 and N2 on 20 negative (no detection) samples from symptomatic hospitalized COVID-patients presenting fluctuating real time RT-PCR results and 10 suspected samples (Ct value&gt;35) from asymptomatic not hospitalized subjects. Results: ddPCR performed on RNA revealed 65% of positivity for at least one viral target in the hospitalized patients group of samples (35% for N1 and N2, 10% only for N1 and 20% only for N2) and 50% in the suspected cases (30% for N1 and N2, while 20% only for N2). On hospitalized patients&rsquo; samples, we applied also a direct ddPCR approach on the swab material, achieving an overall positivity of 83%. Conclusion: ddPCR, in particular the direct quantitation on swabs, shows a sensitivity advantage for the SARS-CoV-2 identification and may be useful to reduce the false negative diagnosis, especially for low viral load suspected samples.


Sign in / Sign up

Export Citation Format

Share Document