scholarly journals Enhancing Task fMRI Preprocessing via Individualized Model-Based Filtering of Intrinsic Activity Dynamics

2020 ◽  
Author(s):  
Matthew F. Singh ◽  
Anxu Wang ◽  
Michael Cole ◽  
ShiNung Ching ◽  
Todd S. Braver

AbstractBrain responses recorded during fMRI are thought to reflect both rapid, stimulus-evoked activity and the propagation of spontaneous activity through brain networks. In the current work we describe a method to improve the estimation of task-evoked brain activity by first “filtering-out” the intrinsic propagation of pre-event activity from the BOLD signal. We do so using Mesoscale Individualized NeuroDynamic (MINDy; [1]) models built from individualized resting-state data (MINDy-based Filtering). After filtering, time-series are analyzed using conventional techniques. Results demonstrate that this simple operation significantly improves the statistical power and temporal precision of estimated group-level effects. Moreover, estimates based upon our technique better generalize between tasks measuring the same construct (cognitive control) and better predict individual differences in behavior. Thus, by subtracting the propagation of previous activity, we obtain better estimates of task-related neural activity.

2018 ◽  
Vol 2 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Taylor Bolt ◽  
Michael L. Anderson ◽  
Lucina Q. Uddin

Contemporary functional neuroimaging research has increasingly focused on characterization of intrinsic or “spontaneous” brain activity. Analysis of intrinsic activity is often contrasted with analysis of task-evoked activity that has traditionally been the focus of cognitive neuroscience. But does this evoked/intrinsic dichotomy adequately characterize human brain function? Based on empirical data demonstrating a close functional interdependence between intrinsic and task-evoked activity, we argue that the dichotomy between intrinsic and task-evoked activity as unobserved contributions to brain activity is artificial. We present an alternative picture of brain function in which the brain’s spatiotemporal dynamics do not consist of separable intrinsic and task-evoked components, but reflect the enaction of a system of mutual constraints to move the brain into and out of task-appropriate functional configurations. According to this alternative picture, cognitive neuroscientists are tasked with describing both the temporal trajectory of brain activity patterns across time, and the modulation of this trajectory by task states, without separating this process into intrinsic and task-evoked components. We argue that this alternative picture of brain function is best captured in a novel explanatory framework called enabling constraint. Overall, these insights call for a reconceptualization of functional brain activity, and should drive future methodological and empirical efforts.


2014 ◽  
Vol 111 (11) ◽  
pp. 2374-2391 ◽  
Author(s):  
A. Mitra ◽  
A. Z. Snyder ◽  
C. D. Hacker ◽  
M. E. Raichle

The discovery that spontaneous fluctuations in blood oxygen level-dependent (BOLD) signals contain information about the functional organization of the brain has caused a paradigm shift in neuroimaging. It is now well established that intrinsic brain activity is organized into spatially segregated resting-state networks (RSNs). Less is known regarding how spatially segregated networks are integrated by the propagation of intrinsic activity over time. To explore this question, we examined the latency structure of spontaneous fluctuations in the fMRI BOLD signal. Our data reveal that intrinsic activity propagates through and across networks on a timescale of ∼1 s. Variations in the latency structure of this activity resulting from sensory state manipulation (eyes open vs. closed), antecedent motor task (button press) performance, and time of day (morning vs. evening) suggest that BOLD signal lags reflect neuronal processes rather than hemodynamic delay. Our results emphasize the importance of the temporal structure of the brain's spontaneous activity.


2010 ◽  
Vol 24 (2) ◽  
pp. 76-82 ◽  
Author(s):  
Martin M. Monti ◽  
Adrian M. Owen

Recent evidence has suggested that functional neuroimaging may play a crucial role in assessing residual cognition and awareness in brain injury survivors. In particular, brain insults that compromise the patient’s ability to produce motor output may render standard clinical testing ineffective. Indeed, if patients were aware but unable to signal so via motor behavior, they would be impossible to distinguish, at the bedside, from vegetative patients. Considering the alarming rate with which minimally conscious patients are misdiagnosed as vegetative, and the severe medical, legal, and ethical implications of such decisions, novel tools are urgently required to complement current clinical-assessment protocols. Functional neuroimaging may be particularly suited to this aim by providing a window on brain function without requiring patients to produce any motor output. Specifically, the possibility of detecting signs of willful behavior by directly observing brain activity (i.e., “brain behavior”), rather than motoric output, allows this approach to reach beyond what is observable at the bedside with standard clinical assessments. In addition, several neuroimaging studies have already highlighted neuroimaging protocols that can distinguish automatic brain responses from willful brain activity, making it possible to employ willful brain activations as an index of awareness. Certainly, neuroimaging in patient populations faces some theoretical and experimental difficulties, but willful, task-dependent, brain activation may be the only way to discriminate the conscious, but immobile, patient from the unconscious one.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Young-Bo Kim ◽  
Nambeom Kim ◽  
Jae Jun Lee ◽  
Seo-Eun Cho ◽  
Kyoung-Sae Na ◽  
...  

AbstractSubjective–objective discrepancy of sleep (SODS) might be related to the distorted perception of sleep deficit and hypersensitivity to insomnia-related stimuli. We investigated differences in brain activation to insomnia-related stimuli among insomnia patients with SODS (SODS group), insomnia patients without SODS (NOSODS group), and healthy controls (HC). Participants were evaluated for subjective and objective sleep using sleep diary and polysomnography. Functional magnetic resonance imaging was conducted during the presentation of insomnia-related (Ins), general anxiety-inducing (Gen), and neutral (Neu) stimuli. Brain reactivity to the contrast of Ins vs. Neu and Gen vs. Neu was compared among the SODS (n = 13), NOSODS (n = 15), and HC (n = 16) groups. In the SODS group compared to other groups, brain areas including the left fusiform, bilateral precuneus, right superior frontal gyrus, genu of corpus callosum, and bilateral anterior corona radiata showed significantly increased blood oxygen level dependent (BOLD) signal in the contrast of Ins vs. Neu. There was no brain region with significantly increased BOLD signal in the Gen vs. Neu contrast in the group comparisons. Increased brain activity to insomnia-related stimuli in several brain regions of the SODS group is likely due to these individuals being more sensitive to sleep-related threat and negative cognitive distortion toward insomnia.


2018 ◽  
Vol 314 (5) ◽  
pp. E522-E529 ◽  
Author(s):  
Renata Belfort-DeAguiar ◽  
Dongju Seo ◽  
Cheryl Lacadie ◽  
Sarita Naik ◽  
Christian Schmidt ◽  
...  

Blood glucose levels influence brain regulation of food intake. This study assessed the effect of mild physiological hyperglycemia on brain response to food cues in individuals with obesity (OB) versus normal weight individuals (NW). Brain responses in 10 OB and 10 NW nondiabetic healthy adults [body mass index: 34 (3) vs. 23 (2) kg/m2, means (SD), P < 0.0001] were measured with functional MRI (blood oxygen level-dependent contrast) in combination with a two-step normoglycemic-hyperglycemic clamp. Participants were shown food and nonfood images during normoglycemia (~95 mg/dl) and hyperglycemia (~130 mg/dl). Plasma glucose levels were comparable in both groups during the two-step clamp ( P = not significant). Insulin and leptin levels were higher in the OB group compared with NW, whereas ghrelin levels were lower (all P < 0.05). During hyperglycemia, insula activity showed a group-by-glucose level effect. When compared with normoglycemia, hyperglycemia resulted in decreased activity in the hypothalamus and putamen in response to food images ( P < 0.001) in the NW group, whereas the OB group exhibited increased activity in insula, putamen, and anterior and dorsolateral prefrontal cortex (aPFC/dlPFC; P < 0.001). These data suggest that OB, compared with NW, appears to have disruption of brain responses to food cues during hyperglycemia, with reduced insula response in NW but increased insula response in OB, an area involved in food perception and interoception. In a post hoc analysis, brain activity in obesity appears to be associated with dysregulated motivation (striatum) and inappropriate self-control (aPFC/dlPFC) to food cues during hyperglycemia. Hyperstimulation for food and insensitivity to internal homeostatic signals may favor food consumption to possibly play a role in the pathogenesis of obesity.


2020 ◽  
Vol 10 (7) ◽  
pp. 469
Author(s):  
Manon Carrière ◽  
Sepehr Mortaheb ◽  
Federico Raimondo ◽  
Jitka Annen ◽  
Alice Barra ◽  
...  

Background. Transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) was reported to promote the recovery of signs of consciousness in some patients in a minimally conscious state (MCS), but its electrophysiological effects on brain activity remain poorly understood. Objective. We aimed to assess behavioral (using the Coma Recovery Scale—Revised; CRS-R) and neurophysiological effects (using high density electroencephalography; hdEEG) of lDLPFC-tDCS in patients with prolonged disorders of consciousness (DOC). Methods. In a double-blind, sham-controlled, crossover design, one active and one sham tDCS (2 mA, 20 min) were delivered in a randomized order. Directly before and after tDCS, 10 min of hdEEG were recorded and the CRS-R was administered. Results. Thirteen patients with severe brain injury were enrolled in the study. We found higher relative power at the group level after the active tDCS session in the alpha band in central regions and in the theta band over the frontal and posterior regions (uncorrected results). Higher weighted symbolic mutual information (wSMI) connectivity was found between left and right parietal regions, and higher fronto-parietal weighted phase lag index (wPLI) connectivity was found, both in the alpha band (uncorrected results). At the group level, no significant treatment effect was observed. Three patients showed behavioral improvement after the active session and one patient improved after the sham. Conclusion. We provide preliminary indications that neurophysiological changes can be observed after a single session of tDCS in patients with prolonged DOC, although they are not necessarily paralleled with significant behavioral improvements.


Author(s):  
Lisa Yang ◽  
Lysia Demetriou ◽  
Matthew B Wall ◽  
Edouard G Mills ◽  
Victoria C Wing ◽  
...  

Abstract Context The hormone kisspeptin has crucial and well-characterized roles in reproduction. Emerging data from animal models also suggest that kisspeptin has important metabolic effects including modulation of food intake. However, to date there have been no studies exploring the effects of kisspeptin on brain responses to food stimuli in humans. Objective This work aims to investigate the effects of kisspeptin administration on brain responses to visual food stimuli and psychometric parameters of appetite, in healthy men. Design A double-blinded, randomized, placebo-controlled, crossover study was conducted. Participants Participants included 27 healthy, right-handed, eugonadal men (mean ± SEM: age 26.5 ± 1.1 years; body mass index 23.9 ± 0.4 kg/m2). Intervention Participants received an intravenous infusion of 1 nmol/kg/h of kisspeptin or rate-matched vehicle over 75 minutes. Main Outcome Measures Measurements included change in brain activity on functional magnetic resonance imaging in response to visual food stimuli and change in psychometric parameters of appetite, during kisspeptin administration compared to vehicle. Results Kisspeptin administration at a bioactive dose did not affect brain responses to visual food stimuli or psychometric parameters of appetite compared to vehicle. Conclusions This is the first study in humans investigating the effects of kisspeptin on brain regions regulating appetite and demonstrates that peripheral administration of kisspeptin does not alter brain responses to visual food stimuli or psychometric parameters of appetite in healthy men. These data provide key translational insights to further our understanding of the interaction between reproduction and metabolism.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Oshrit Arviv ◽  
Abraham Goldstein ◽  
Oren Shriki

Abstract Neuronal avalanches are a hallmark feature of critical dynamics in the brain. While the theoretical framework of a critical branching processes is generally accepted for describing avalanches during ongoing brain activity, there is a current debate about the corresponding dynamical description during stimulus-evoked activity. As the brain activity evoked by external stimuli considerably varies in magnitude across time, it is not clear whether the parameters that govern the neuronal avalanche analysis (a threshold or a temporal scale) should be adaptively altered to accommodate these changes. Here, the relationship between neuronal avalanches and time-frequency representations of stimulus-evoked activity is explored. We show that neuronal avalanche metrics, calculated under a fixed threshold and temporal scale, reflect genuine changes in the underlying dynamics. In particular, event-related synchronization and de-synchronization are shown to align with variations in the power-law exponents of avalanche size distributions and the branching parameter (neural gain), as well as in the spatio-temporal spreading of avalanches. Nonetheless, the scale-invariant behavior associated with avalanches is shown to be a robust feature of healthy brain dynamics, preserved across various periods of stimulus-evoked activity and frequency bands. Taken together, the combined results suggest that throughout stimulus-evoked responses the operating point of the dynamics may drift within an extended-critical-like region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marija Markicevic ◽  
Iurii Savvateev ◽  
Christina Grimm ◽  
Valerio Zerbi

AbstractIn the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
María Paternina-Die ◽  
Magdalena Martínez-García ◽  
Clara Pretus ◽  
Elseline Hoekzema ◽  
Erika Barba-Müller ◽  
...  

Abstract The transition into fatherhood is a life-changing event that requires substantial psychological adaptations. In families that include a father figure, sensitive paternal behavior has been shown to positively impact the infant’s development. Yet, studies exploring the neuroanatomic adaptations of men in their transition into fatherhood are scarce. The present study used surface-based methods to reanalyze a previously published prospective magnetic resonance imaging dataset comprised of 20 first-time fathers (preconception-to-postpartum) and 17 childless men. We tested if the transition into fatherhood entailed changes in cortical volume, thickness, and area and whether these changes were related to 2 indicators of paternal experience. Specifically, we tested if such changes were associated with (1) the baby’s age and/or (2) the fathers’ brain activity in response to pictures of their babies compared with an unknown baby. Results indicated that first-time fathers exhibited a significant reduction in cortical volume and thickness of the precuneus. Moreover, higher volume reduction and cortical thinning were associated with stronger brain responses to pictures of their own baby in parental brain regions. This is the first study showing preconception-to-postpartum neuroanatomical adaptations in first-time fathers associated with the father’s brain response to cues of his infant.


Sign in / Sign up

Export Citation Format

Share Document