scholarly journals Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice

2020 ◽  
Author(s):  
Pengpeng Liu ◽  
Shun-Qing Liang ◽  
Chunwei Zheng ◽  
Esther Mintzer ◽  
Yan G. Zhao ◽  
...  

AbstractPrime editors (PEs) mediate genome modification without utilizing double-stranded DNA breaks or exogenous donor DNA as a template. PEs facilitate nucleotide substitutions or local insertions or deletions within the genome based on the template sequence encoded within the prime editing guide RNA (pegRNA). However, the efficacy of prime editing in adult mice has not been established. Here we report an NLS-optimized SpCas9-based prime editor that improves genome editing efficiency in both fluorescent reporter cells and at endogenous loci in cultured cell lines. Using this genome modification system, we could also seed tumor formation through somatic cell editing in the adult mouse. Finally, we successfully utilize dual adeno-associated virus (AAVs) for the delivery of a split-intein prime editor and demonstrate that this system enables the correction of a pathogenic mutation in the mouse liver. Our findings further establish the broad potential of this genome editing technology for the directed installation of sequence modifications in vivo, with important implications for disease modeling and correction.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pengpeng Liu ◽  
Shun-Qing Liang ◽  
Chunwei Zheng ◽  
Esther Mintzer ◽  
Yan G. Zhao ◽  
...  

AbstractPrime editors (PEs) mediate genome modification without utilizing double-stranded DNA breaks or exogenous donor DNA as a template. PEs facilitate nucleotide substitutions or local insertions or deletions within the genome based on the template sequence encoded within the prime editing guide RNA (pegRNA). However, the efficacy of prime editing in adult mice has not been established. Here we report an NLS-optimized SpCas9-based prime editor that improves genome editing efficiency in both fluorescent reporter cells and at endogenous loci in cultured cell lines. Using this genome modification system, we could also seed tumor formation through somatic cell editing in the adult mouse. Finally, we successfully utilize dual adeno-associated virus (AAVs) for the delivery of a split-intein prime editor and demonstrate that this system enables the correction of a pathogenic mutation in the mouse liver. Our findings further establish the broad potential of this genome editing technology for the directed installation of sequence modifications in vivo, with important implications for disease modeling and correction.


2021 ◽  
Author(s):  
Jeffrey C Medley ◽  
Shilpa Hebbar ◽  
Joel T Sydzyik ◽  
Anna Y. Zinovyeva

In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize off-target sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts post-injection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.


2019 ◽  
Author(s):  
Florian Veillet ◽  
Laura Chauvin ◽  
Marie-Paule Kermarrec ◽  
François Sevestre ◽  
Mathilde Merrer ◽  
...  

AbstractGenome editing has recently become a method of choice for basic research and functional genomics, and holds great potential for molecular plant breeding applications. The powerful CRISPR-Cas9 system that typically produces double-strand DNA breaks is mainly used to generate knockout mutants. Recently, the development of base editors has broadened the scope of genome editing, allowing precise and efficient nucleotide substitutions. In this study, we produced mutants in two cultivated elite cultivars of the tetraploid potato (Solanum tuberosum) using stable or transient expression of the CRISPR-Cas9 components to knockout the amylose-producing StGBSSI gene. We set up a rapid, highly sensitive and cost-effective screening strategy based on high-resolution melting analysis followed by direct Sanger sequencing and trace chromatogram analysis. Most mutations consisted of small indels, but unwanted insertions of plasmid DNA were also observed. We successfully created tetra-allelic mutants with impaired amylose biosynthesis, confirming the loss-of-function of the StGBSSI protein. The second main objective of this work was to demonstrate the proof of concept of CRISPR-Cas9 base editing in the tetraploid potato by targeting two loci encoding catalytic motifs of the StGBSSI enzyme. Using a cytidine base editor (CBE), we efficiently and precisely induced DNA substitutions in the KTGGL-encoding locus, leading to discrete variation in the amino acid sequence and generating a loss-of-function allele. The successful application of base editing in the tetraploid potato opens up new avenues for genome engineering in this species.Key MessageThe StGBSSI gene was successfully and precisely edited in the tetraploid potato using gene and base editing strategies, leading to plants with impaired amylose biosynthesis.


2020 ◽  
Author(s):  
Feng Li ◽  
Tsz Y. Lo ◽  
Leann Miles ◽  
Qin Wang ◽  
Dan Li ◽  
...  

ABSTRACTAtr is a serine/threonine kinase, known to sense single-stranded DNA breaks and activate the DNA damage checkpoint by phosphorylating Chek1, which inhibits Cdc25, causing cell cycle arrest. This pathway has not been implicated in neuroregeneration. We show that in Drosophila sensory neurons, removing Atr or Chek1, or overexpressing Cdc25 promotes regeneration, whereas Atr or Chek1 overexpression, or Cdc25 knockdown impedes regeneration. Inhibiting the Atr-associated checkpoint complex in neurons promotes regeneration and improves synapse/behavioral recovery after CNS injury. Independent of DNA damage, Atr responds to the mechanical stimulus elicited during regeneration, via the mechanosensitive ion channel Piezo and its downstream NO signaling. Sensory neuron-specific knockout of Atr in adult mice, or pharmacological inhibition of Atr-Chek1 in mammalian neurons in vitro and in flies in vivo enhance regeneration. Our findings reveal the Piezo-Atr-Chek1-Cdc25 axis as an evolutionarily conserved inhibitory mechanism for regeneration, and identify potential therapeutic targets for treating nervous system trauma.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S908-S908
Author(s):  
Jawara Allen ◽  
Shaoguang Wu ◽  
Xinqun Wu ◽  
Cynthia Sears

Abstract Background Individuals born in 1990 have twice the risk of developing colon cancer and four times the risk of developing rectal cancer as those born in 1950. The gut microbiome is being proposed as a potential contributor to this difference because of the surge in obesity in the United States, the link between obesity and gut dysbiosis, and the growing number of studies which have associated a dysbiotic gut microbiome with CRC. Enterotoxigenic Bacteroides fragilis (ETBF) is one of the bacteria most studied in relation to CRC development; it is found at a higher frequency in both the stool and mucosa of CRC patients, and it rapidly induces tumor formation in an Apcmin/+ mouse model of CRC. In this model, tumor formation typically occurs via loss of heterozygosity (LOH) of the Apc gene, the genetic mutation found in approximately 80% of sporadic CRC cases. ETBF produces a potent exotoxin (BFT) which induces E-cadherin cleavage, β-catenin nuclear localization and colonic epithelial cell proliferation. But we still do not understand how these downstream effects cause lasting changes in the genome of colon epithelial cells that then initiate tumor formation and growth. As cancer is ultimately a disease that arises and progresses via changes in the genome, understanding these interactions is essential. Methods We hypothesize that ETBF induces DNA mutations via BFT that encourage tumor formation, and enhance tumor growth. To test this hypothesis, we performed whole-exome sequencing on tumors and normal tissue isolated from Apcmin/+ mice after ETBF or sham inoculation. Additionally, we isolated colon organoids from Apcmin/+ mouse normal tissue (colonoids) and Apcmin/+ mouse tumors (tumoroids) after ETBF or sham inoculation. We performed in vitro DNA damage assays and qPCR for Apc LOH on these colon organoids. Results Our preliminary data indicate that ETBF-induced tumors have lower rates of Apc LOH and that double-stranded DNA breaks are observed as soon as 3-hours after BFT treatment of colonoids and as soon as 72-hours after ETBF inoculation. Conclusion These data suggest that in vivo, ETBF may induce mutations in cancer-driver genes which cause tumor formation via pathways other than somatic recombination at the Apc locus, a result we are now testing with additional (N = 19) whole-exome tumor sequencing in-progress. Disclosures All authors: No reported disclosures.


2020 ◽  
Author(s):  
Haseena Khan ◽  
Megan C McDonald ◽  
Simon J Willams ◽  
Peter Solomon

Abstract Background: The genome-editing tool CRISPR/Cas9 has revolutionized gene manipulation by providing an efficient method to generate targeted mutations. This technique deploys the Cas9 endonuclease and a guide RNA (gRNA) which interact to form a Cas9-gRNA complex that initiates gene editing through the introduction of double stranded DNA breaks. We tested the efficacy of the CRISPR/Cas9 approach as a means of facilitating a variety of reverse genetic approaches in the wheat pathogenic fungus Parastagonospora nodorum . Results: Parastagonospora nodorum protoplasts were transformed with the Cas9 protein and gRNA in the form of a preassembled ribonuclear protein (RNP) complex targeting the Tox3 effector gene. Subsequent screening of the P. nodorum transformants revealed 100% editing of those mutants screened. We further tested the efficacy of RNP complex when co-transformed with a Tox3 -Homology Directed Repair cassette harbouring 1 kb of homologous flanking DNA. Subsequent screening of resulting transformants demonstrated homologous recombination efficiencies exceeding 70%. A further transformation with a Tox3 -Homology Directed Repair cassette harbouring a selectable marker with 50 bp micro-homology flanks was also achieved 25% homologous recombination efficiency. The success of these homology directed repair approaches demonstrate that CRISPR/Cas9 is amenable to other in vivo DNA manipulation approaches such as the insertion of DNA and generating point mutations. Conclusion: These data highlight the significant potential that CRISPR/Cas9 has in expediting gene transgene-free knockouts in Parastagonospora nodorum and also in facilitating other gene manipulation approaches. Access to these tools will significantly decrease the time required to assess the requirement of gene for disease and to undertake functional studies to determine its role.


2021 ◽  
Author(s):  
yuesi wang ◽  
Yuanyuan Li ◽  
Jing Sun ◽  
Tingting Xu ◽  
Xiaobin Weng ◽  
...  

Neural stem cells (NSCs) have great potential in the application of neurodegenerative disease therapy, drug screening and disease modeling. NSC can be generated by reprogramming from terminally differentiated cells with transcription factors or small molecules. However, current methods for producing NSCs involve the danger of integrating foreign genes into the genome and the problem of low efficiency. Here, we report an efficient method to generate NSCs from human skin-derived fibroblasts with microRNA (mir-302a) in 2-3 days. The induced NSCs (iNSCs) have more than 90% of purity. Their morphology is similar to regular NSCs, expressing key markers including Nestin, Pax6 and Sox2, and can be expanded for more than 20 passages in vitro. They can also differentiate into functional neuron progeny, astrocytes and oligodendrocytes as well. Those cells can elicit action potential, can be xeno-transplanted into the brain of immune-deficient mice, and can survive and differentiate in vivo without tumor formation. This study shows that a single part of pluripotency-inducing mir-302 cluster can drive fibroblasts reprogramming, providing a general platform for high-efficiency generation of individual-specific human NSCs for studies of neuron system development and regenerative cell therapy.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Xianming Zhang ◽  
You-yang Zhao

Introduction: Therapeutic delivery of CRISPR system components to induce in vivo genome editing in postnatal and adult life has great translational potential. Recent studies employing non-viral delivery of small guide RNA (gRNA) and Cas9 mRNA have achieved efficient genome editing in adult mice. However, as often seen in other RNA therapeutic studies with non-viral delivery of antisense and siRNA, the efficiency is limited to the liver. Hypothesis: Novel nanoparticle can therapeutically deliver the CRISPR system to selectively target cardiovascular endothelium in adult mice. Methods: We developed novel PLGA-based nanoparticles which was for the first time shown to be uptaken efficiently by the vascular endothelium without specific liver accumulation following i.v. administration. Mixture of the nanoparticle:plasmid DNA expressing Cas9 under the control of the human CDH5 promoter (EC-specific) and gRNA by the U6 promoter was administered i.v. to adult mice. Seven to ten days later, various organ tissues were collected for analysis of the efficiency of genomic editing and knockout of protein expression. The phenotype of CRISPR-mediated in vivo knockout of Pik3cg which encodes the G protein-coupled receptor-activated p110gamma isoform of PI3K was compared to Pik3cg null mice in response to sepsis challenge. Results: Therapeutic delivery of nanoparticles loaded with the all-in-one CRISPR plasmid DNA induced highly efficient genome editing in endothelial cells (ECs) of the cardiovascular system including heart, lung, and aorta in adult mice. The Indel rate was as great as 50% in ECs isolated from these vascular beds. Immunostaining and Western blotting demonstrated greater than 70% decrease of protein expression in ECs. Pik3cg -gRNA-induced genome editing diminished p110γPI3K expression in pulmonary vascular ECs, which led to impaired vascular repair and resolution of inflammation after sepsis challenge as seen in Pik3cg -/- mice. Conclusion: We have developed a simple and highly efficient method for in vivo genome editing selectively targeting the vascular endothelium. This strategy will greatly facilitate cardiovascular research and may enable therapeutic genome editing for prevention and treatment of cardiovascular diseases.


2018 ◽  
Vol 115 (31) ◽  
pp. E7379-E7388 ◽  
Author(s):  
Laura J. Smith ◽  
Jason Wright ◽  
Gabriella Clark ◽  
Taihra Ul-Hasan ◽  
Xiangyang Jin ◽  
...  

The precise correction of genetic mutations at the nucleotide level is an attractive permanent therapeutic strategy for human disease. However, despite significant progress, challenges to efficient and accurate genome editing persist. Here, we report a genome editing platform based upon a class of hematopoietic stem cell (HSC)-derived clade F adeno-associated virus (AAV), which does not require prior nuclease-mediated DNA breaks and functions exclusively through BRCA2-dependent homologous recombination. Genome editing is guided by complementary homology arms and is highly accurate and seamless, with no evidence of on-target mutations, including insertion/deletions or inclusion of AAV inverted terminal repeats. Efficient genome editing was demonstrated at different loci within the human genome, including a safe harbor locus, AAVS1, and the therapeutically relevant IL2RG gene, and at the murine Rosa26 locus. HSC-derived AAV vector (AAVHSC)-mediated genome editing was robust in primary human cells, including CD34+cells, adult liver, hepatic endothelial cells, and myocytes. Importantly, high-efficiency gene editing was achieved in vivo upon a single i.v. injection of AAVHSC editing vectors in mice. Thus, clade F AAV-mediated genome editing represents a promising, highly efficient, precise, single-component approach that enables the development of therapeutic in vivo genome editing for the treatment of a multitude of human gene-based diseases.


2021 ◽  
Author(s):  
Omer Habib ◽  
Gizem Habib ◽  
Gue-ho Hwang ◽  
Sangsu Bae

Prime editing is a versatile and precise genome editing technique that can directly copy desired genetic modifications into target DNA sites without the need for donor DNA. This technique holds great promise for the analysis of gene function, disease modeling, and the correction of pathogenic mutations in clinically relevant cells such as human pluripotent stem cells (hPSCs). Here we comprehensively tested prime editing in hPSCs by generating a doxycycline-inducible prime editing platform. Prime editing successfully induced all types of nucleotide substitutions and small insertions and deletions, similar to observations in other human cell types. Moreover, we compared prime editing and base editing for correcting a disease-related mutation in induced pluripotent stem cells derived form a patient with α 1-antitrypsin (A1AT) deficiency. Finally, whole-genome sequencing showed that, unlike the cytidine deaminase domain of cytosine base editors, the reverse transcriptase domain of a prime editor does not lead to guide RNA-independent off-target mutations in the genome. Our results demonstrate that prime editing in hPSCs has great potential for complementing previously developed CRISPR genome editing tools.


Sign in / Sign up

Export Citation Format

Share Document