scholarly journals In vivo genetic screen identifies a SLC5A3-dependent myo-inositol auxotrophy in acute myeloid leukemia

2020 ◽  
Author(s):  
Yiliang Wei ◽  
Shruti V. Iyer ◽  
Ana S. H. Costa ◽  
Zhaolin Yang ◽  
Melissa Kramer ◽  
...  

AbstractAn enhanced requirement for extracellular nutrients is a hallmark property of cancer cells. Here, we optimized an in vivo genetic screening strategy for evaluating dependencies in acute myeloid leukemia (AML), which led to the identification of the myo-inositol transporter SLC5A3 as a unique vulnerability in this disease. In accord with this transport function, we demonstrate that the SLC5A3 dependency reflects a myo-inositol auxotrophy in AML. Importantly, the commonality among SLC5A3-dependent AML lines is the transcriptional silencing of ISYNA1, which encodes the rate limiting enzyme for myoinositol biosynthesis, inositol-3-phosphate synthase 1. We used gain- and loss-of-function experiments to demonstrate a synthetic lethal genetic interaction between ISYNA1 and SLC5A3 in AML, which function redundantly to sustain intracellular myo-inositol. Transcriptional silencing and DNA hypermethylation of ISYNA1 occur in a recurrent manner in human AML patient samples, in association with the presence of IDH1/IDH2 and CEBPA mutations. Collectively, our findings reveal myo-inositol auxotrophy as a novel form of metabolic dysregulation in AML, which is caused by the aberrant silencing of a biosynthetic enzyme.Statement of significanceHere, we show how epigenetic silencing can provoke a nutrient dependency in AML by exploiting a synthetic lethality relationship between biosynthesis and transport of myo-inositol. Blocking the function of this solute carrier may have therapeutic potential in an epigenetically-defined subset of AML.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2083-2083
Author(s):  
Bing Xu ◽  
Yuanfei Shi ◽  
Long Liu ◽  
Bing Z Carter

BCL-2 inhibition exerts effective pro-apoptotic activities in acute myeloid leukemia (AML) but clinical efficacy as a monotherapy was limited in part due to the treatment-induced MCL-1 increase. Triptolide (TPL) exhibits anti-tumor activities in part by upregulating pro-apoptotic BCL-2 proteins and decreasing MCL-1 expression in various malignant cells. We hypothesized that combined BCL-2 inhibition and TPL exert synergistic anti-leukemia activities and prevent the resistance to BCL-2 inhibition in AML. We here report that TPL combined with BCL-2 inhibitor ABT-199 synergistically induced apoptosis in leukemic cells regardless of p53 status through activating the intrinsic mitochondrial apoptotic pathway in vitro. Although ABT-199 or TPL alone inhibited AML growth in vivo, the combination therapy demonstrated a significantly stronger anti-leukemic effect. Mechanistically, TPL significantly upregulated BH3 only proteins including PUMA, NOXA, BID and BIM and decreased MCL-1 but upregulated BCL-2 expression in both p53 wild type and p53 mutant AML cell lines, while the combination decreased both BCL-2 and MCL-1 and further increased BH3 only BCL-2 proteins. MCL-1 and BCL-2 increases associated with respective ABT-199 and TPL treatment and resistance were also observed in vivo. Significantly downregulating MCL-1 and elevating BH3 only proteins by TPL could not only potentially block MCL-1-mediated resistance but also enhance anti-leukemic efficacy of ABT-199. Conversely, BCL-2 inhibition counteracted the potential resistance of TPL mediated by upregulation of BCL-2. The combination further amplified the effect, which likely contributed to the synthetic lethality. This mutual blockade of potential resistance provides a rational basis for the promising clinical application of TPL and BCL-2 inhibition in AML independent of p53 status. Disclosures Carter: Amgen: Research Funding; AstraZeneca: Research Funding; Ascentage: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1648-1648 ◽  
Author(s):  
Yaser Heshmati ◽  
Gözde Turköz ◽  
Aditya Harisankar ◽  
Sten Linnarsson ◽  
Marios Dimitriou ◽  
...  

Abstract Acute myeloid leukemia (AML) is characterized by impaired myeloid differentiation of hematopoietic progenitors, causing uncontrolled proliferation and accumulation of immature myeloid cells in the bone marrow. Rearrangements of the mixed lineage leukemia (MLL) gene are common aberrations in acute leukemia and occur in over 70% in childhood leukemia and 5-10% in leukemia of adults. MLL rearrangements encode a fusion oncogenic H3K4 methytransferase protein, which is sufficient to transform hematopoietic cells and give rise to an aggressive subtype of AML. Leukemia where the MLL fusion oncogene is expressed is characterized by dismal prognosis and 30-60% of 5-years overall survival rate. The current standard treatment for AML is chemotherapy and in certain cases bone marrow transplantation. However, chemotherapy causes severe side effects on normal cells and an increased risk of relapse. Consequently, discovery of novel drug targets with better efficacy and low toxicity are needed to improve treatment of AML. In this study, we aimed to identify genes that are required for growth of AML cells and that encode proteins that potentially could be used as therapeutic targets. To do this, we performed high-throughput RNAi screening covering all annotated human genes and the homologous genes in mice, using barcoded lentiviral-based shRNA vectors. Stable loss-of-function screening was done in three AML cell lines (two human and one murine AML cell lines) as well as in a non-transformed hematopoietic control cell line. The candidate genes were selected based on that shRNA-mediated knockdown caused at least a 5-fold growth inhibition of leukemic cells and that the individual candidates were targeted by multiple shRNAs. The chromodomain Helicase DNA binding protein 4 (CHD4), a chromatin remodeler ATPase, displayed the most significant effect in reduced AML cell proliferation upon inhibition among the overlapping candidate genes in all three AML cell lines. CHD4 is a main subunit of the Nucleosome Remodeling Deacetylase (NuRD) complex and has been associated with epigenetic transcriptional repression. A recent study has shown that inhibition of CHD4 sensitized AML cells to genotoxic drugs by chromatin relaxation, which increases rate of double-stranded break (DSB) in leukemic cells. To verify whether CHD4 is exclusively essential for AML with MLL rearrangements, we inhibited CHD4 expression with two independent shRNAs in various AML cell lines with and without MLL translocations. In vitro monitoring of growth and viability indicated that knockdown of CHD4 efficiently suppressed growth in all tested cell lines, suggesting that CHD4 is required in general for growth of leukemic cells. To test the effect of CHD4 inhibition in normal hematopoiesis, we pursued knockdown of CHD4 and monitored effects in hematopoiesis using colony formation assays of human CD34+ cells. The results demonstrated that CHD4 knockdown had minor effects in colony formation as well as growth and survival of normal hematopoietic cells. Furthermore, to explore whether inhibition of CHD4 can prevent AML tumor growth and disease progression in vivo, we have generated a mouse model for AML. By transplanting AML cells transduced with shRNA against CHD4 into recipient mice, we showed that shRNA-mediated targeting of CHD4 not only significantly prolonged survival of AML transplanted mice but also in some cases completely rescued some mice from development of the disease. Collectively, these data suggested that CHD4 is required for AML maintenance in vivo. Next, to determine whether suppression of CHD4 can inhibit cell growth of different subpopulations and subtypes of AML, we performed loss of function studies of CHD4 on patient-derived AML cells ex vivo. Loss of CHD4 expression significantly decreased the frequency of leukemic initiating cells in different subtypes AML patient samples. In further in vivo studies using a xeno-tranplantation model for AML, we demonstrated that shRNA-mediated inhibition of CHD4 significantly reduced the frequency of leukemic cells in the marrow 6 weeks after transplantation. Taken together our results demonstrated the critical and selective role of CHD4 in propagation of patient-derived AML cells as well as in disease progression in mouse models for AML. We believe that CHD4 represents a novel potential therapeutic target that can be used to battle AML. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
pp. 204062232199725
Author(s):  
Lu Xue ◽  
Chunhuai Li ◽  
Jin Ren ◽  
Yue Wang

Aims: Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm, in which relapse due to drug resistance is the main cause for treatment failure and the disease progression. In this study, we aimed to investigate the molecular mechanism of KDM4C-dependent MALAT1/miR-328-3p/CCND2 axis in cytarabine (Ara-C) resistance in the context of AML. Methods: Bioinformatics analysis was performed to predict the targeting relationships among KDM4C, MALAT1, miR-328-3p, and CCND2 in AML, which were validated with chromatin immunoprecipitation and dual-luciferase reporter assay. Methylation-specific polymerase chain reaction was conducted to detect the methylation of MALAT1 promoter. After conducting gain- and loss-of-function assays, we investigated the effect of KDM4C on cell Ara-C resistance. A NOD/SCID mouse model was established to further investigate the roles of KDM4C/MALAT1/miR-328-3p/CCND2 in Ara-C resistant AML cells. Results: KDM4C expression was upregulated in AML. KDM4C upregulation promoted the demethylation in the promoter region of MALAT1 to increase its expression, MALAT1 targeted and inhibited miR-328-3p expression, enhancing the Ara-C resistance of HL-60/A. miR-328-3p targeted and suppressed the expression of CCND2 in HL-60/A to inhibit the Ara-C resistance. Mechanistically, KDM4C regulated miR-328-3p/CCND2 through MALAT1, resulting in Ara-C resistance in AML. Findings in an in vivo xenograft NOD/SCID mouse model further confirmed the contribution of KDM4C/MALAT1/miR-328-3p/CCND2 in the Ara-C resistant AML. Conclusion: Our study demonstrated that KDM4C may up-regulate MALAT1 expression, which decreases the expression of miR-328-3p. The downregulation of miR-328-3p increased the level of CCND2, which induced the Ara-C resistance in AML.


2020 ◽  
Author(s):  
Zhaolin Yang ◽  
Yiliang Wei ◽  
Xiaoli S. Wu ◽  
Shruti V. Iyer ◽  
Moonjung Jung ◽  
...  

AbstractHundreds of genes become aberrantly silenced in acute myeloid leukemia (AML), with most of these epigenetic changes being of unknown functional consequence. Here, we demonstrate how gene silencing can lead to an acquired dependency on the DNA repair machinery in AML. We make this observation by profiling the essentiality of the ubiquitin conjugation and ligation machinery in cancer cell lines using domain-focused CRISPR screening, which revealed Fanconi anemia (FA) proteins UBE2T (an E2) and FANCL (an E3) as unique dependencies in AML. We demonstrate that these dependencies are due to a synthetic lethal interaction between FA proteins and Aldehyde Dehydrogenase 2 (ALDH2), which function in parallel pathways to counteract the genotoxic effects of endogenous aldehydes. We provide evidence that DNA hypermethylation and transcriptional silencing of ALDH2 occur in a recurrent manner in human AML patient samples, which is sufficient to confer FA pathway dependency in this disease. Taken together, our study suggests that targeting of the ubiquitination reaction catalyzed by FA proteins can eliminate ALDH2-deficient AML.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2143
Author(s):  
Maria Hernandez-Valladares ◽  
Rebecca Wangen ◽  
Elise Aasebø ◽  
Håkon Reikvam ◽  
Frode S. Berven ◽  
...  

All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells. Before starting the combined treatment, AML responders showed increased levels of several proteins, especially those involved in neutrophil degranulation/differentiation, M phase regulation and the interconversion of nucleotide di- and triphosphates (i.e., DNA synthesis and binding). Several among the differentially regulated phosphorylation sites reflected differences in the regulation of RNA metabolism and apoptotic events at the same time point. These effects were mainly caused by increased cyclin dependent kinase 1 and 2 (CDK1/2), LIM domain kinase 1 and 2 (LIMK1/2), mitogen-activated protein kinase 7 (MAPK7) and protein kinase C delta (PRKCD) activity in responder cells. An extensive effect of in vivo treatment with ATRA/VP was the altered level and phosphorylation of proteins involved in the regulation of transcription/translation/RNA metabolism, especially in non-responders, but the regulation of cell metabolism, immune system and cytoskeletal functions were also affected. Our analysis of serial samples during the first week of treatment suggest that proteomic and phosphoproteomic profiling can be used for the early identification of responders to ATRA/VP-based treatment.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3385
Author(s):  
Axel H. Schönthal ◽  
Steve Swenson ◽  
Radu O. Minea ◽  
Hye Na Kim ◽  
Heeyeon Cho ◽  
...  

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.


2013 ◽  
Vol 37 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Rainer Claus ◽  
Dietmar Pfeifer ◽  
Maika Almstedt ◽  
Manuela Zucknick ◽  
Björn Hackanson ◽  
...  

2016 ◽  
Vol 113 (43) ◽  
pp. E6669-E6678 ◽  
Author(s):  
Mark A. Gregory ◽  
Angelo D’Alessandro ◽  
Francesca Alvarez-Calderon ◽  
Jihye Kim ◽  
Travis Nemkov ◽  
...  

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.


2005 ◽  
Vol 114 (2) ◽  
pp. 121-124
Author(s):  
T. Fietz ◽  
R. Arnold ◽  
G. Massenkeil ◽  
K. Rieger ◽  
B. Reufi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document