Decitabine induces very early in vivo DNA methylation changes in blasts from patients with acute myeloid leukemia

2013 ◽  
Vol 37 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Rainer Claus ◽  
Dietmar Pfeifer ◽  
Maika Almstedt ◽  
Manuela Zucknick ◽  
Björn Hackanson ◽  
...  
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 150-150 ◽  
Author(s):  
Nicholas Zorko ◽  
Susan P. Whitman ◽  
Kelsie Bernot ◽  
Myntee T. Ngangana ◽  
Ronald Siebenaler ◽  
...  

Abstract Abstract 150 Background. The Mll PTD and Flt3 ITD are co-present in a subset of adult patients (pts) with cytogenetically normal (CN) acute myeloid leukemia (AML) and poor clinical outcomes. While the single mutant knock-in (KI) mice (Mll PTD or Flt3 ITD) exhibit enhanced myeloid progenitor self-renewal or reduced apoptosis, respectively, neither model develops acute leukemia. We hypothesized that with mutant expression driven via the endogenous promoters, the two mutations may cooperate in vivo to induce an acute leukemia that mimics the human counterpart. Methods. Single mutant heterozygous KI mice were crossed to produce the PTD/ITD double KI. PTD/ITD mice were bred with the homozygous Flt3 ITD to generate the PTD/ITD2 genotype. An AML diagnosis was based on blood differentials, immunophenotyping, tissue pathology and transplantability. Real time RT-PCR and 5'-methylcytosine LC/MS assays measured gene expression and global DNA methylation levels, respectively. Results. PTD/ITD and PTD/ITD2 mice developed transplantable, CN-AML/undifferentiated leukemia exhibiting expansion of monocytic/myelomonocytic Gr1±/Mac1+ and/or immature CD3−/CD19−/CD117+/Mac1−/B220lo cell populations, splenomegaly, leukocytosis, anemia and thrombocytopenia. PTD/ITD mice had significantly reduced lifespans compared to mice with single mutant PTD and ITD KIs and wild-type (Wt) controls (medians: 50, 99, 88, 94 weeks, respectively; P<0.001) (Figure 1). Increased ITD gene dosage (PTD/ITD2) was associated with an even shorter lifespan (median: 16 weeks) (Figure 1). This is consistent with the poor prognosis conferred by high FLT3 ITD-to-FLT3 wild-type (WT) gene ratio in diagnostic leukemia blasts from AML pts treated with intensive chemotherapy. As in human MLL PTD AML, the Mll WT allele was downregulated in the murine model. Mll WT expression was >2-fold lower in bone marrow (BM) of leukemic PTD/ITD mice compared to age-matched single mutant KIs or Wt controls. HoxA9 and its cofactor Meis1 were upregulated 15- and 5-fold, respectively, in PTD/ITD mice with leukemia versus Wt BM. Yet, compared to Wt BM, single PTD KI exhibited increased HoxA9 (∼6-fold) but not Meis1, implicating an expression threshold for HoxA9 and a crucial role for Meis1 for the development of acute leukemia in the double KI. Consistent with Flt3 being a downstream transcriptional target of Meis1, total Flt3 mRNA (WT and ITD) levels increased 3-fold in the leukemic PTD/ITD mice relative to either single mutant KIs or Wt controls. Furthermore, one consequence of constitutive Flt3 ITD kinase activity is the upregulation of the anti-apoptotic kinase, Pim1, in human AML. Compared to Wt BM, a 2-fold increase in Pim-1 expression was observed in single ITD KI and a 6-fold increase was observed in leukemic PTD/ITD BM, while expression was unchanged in the single PTD KI BM. Finally, MLL PTD presence in human AML associates with increased global DNA methylation and silencing of tumor suppressor genes. We observed 3-fold higher transcript levels of a de novo methyltransferase, DNA methyltransferase 3b (DNMT3b), increased global DNA methylation and ≥2-fold decrease in the expression of tumor suppressors Id4, Shp1 and Cdkn1b in BM of leukemia PTD/ITD mice compared to age-matched single mutant KIs and Wt controls. Conclusion. The Flt3 ITD and Mll PTD, expressed via their endogenous promoters, cooperate in vivo to give rise to AML and acute undifferentiated leukemia. Elevations of Meis1 and DNMT3b solely in PTD/ITD animals appear to be critical points of dysregulation leading to development of acute leukemia. This novel murine model phenotypically, molecularly, and epigenetically mimics the human AML counterpart, thus making it highly relevant for examining critical pathways in acute myeloid leukemogenesis, investigating leukemia stem/initiating cell biology and microenvironment contributions, and testing novel targeting therapeutics. Disclosures: No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2143
Author(s):  
Maria Hernandez-Valladares ◽  
Rebecca Wangen ◽  
Elise Aasebø ◽  
Håkon Reikvam ◽  
Frode S. Berven ◽  
...  

All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells. Before starting the combined treatment, AML responders showed increased levels of several proteins, especially those involved in neutrophil degranulation/differentiation, M phase regulation and the interconversion of nucleotide di- and triphosphates (i.e., DNA synthesis and binding). Several among the differentially regulated phosphorylation sites reflected differences in the regulation of RNA metabolism and apoptotic events at the same time point. These effects were mainly caused by increased cyclin dependent kinase 1 and 2 (CDK1/2), LIM domain kinase 1 and 2 (LIMK1/2), mitogen-activated protein kinase 7 (MAPK7) and protein kinase C delta (PRKCD) activity in responder cells. An extensive effect of in vivo treatment with ATRA/VP was the altered level and phosphorylation of proteins involved in the regulation of transcription/translation/RNA metabolism, especially in non-responders, but the regulation of cell metabolism, immune system and cytoskeletal functions were also affected. Our analysis of serial samples during the first week of treatment suggest that proteomic and phosphoproteomic profiling can be used for the early identification of responders to ATRA/VP-based treatment.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ting-juan Zhang ◽  
Zi-jun Xu ◽  
Yu Gu ◽  
Ji-chun Ma ◽  
Xiang-mei Wen ◽  
...  

Abstract Background Obesity confers enhanced risk for multiple diseases including cancer. The DNA methylation alterations in obesity-related genes have been implicated in several human solid tumors. However, the underlying role and clinical implication of DNA methylation of obesity-related genes in acute myeloid leukemia (AML) has yet to be elucidated. Results In the discovery stage, we identified that DNA methylation-associated LEP expression was correlated with prognosis among obesity-related genes from the databases of The Cancer Genome Atlas. In the validation stage, we verified that LEP hypermethylation was a frequent event in AML by both targeted bisulfite sequencing and real-time quantitative methylation-specific PCR. Moreover, LEP hypermethylation, correlated with reduced LEP expression, was found to be associated with higher bone marrow blasts, lower platelets, and lower complete remission (CR) rate in AML. Importantly, survival analysis showed that LEP hypermethylation was significantly associated with shorter overall survival (OS) in AML. Moreover, multivariate analysis disclosed that LEP hypermethylation was an independent risk factor affecting CR and OS among non-M3 AML. By clinical and bioinformatics analysis, LEP may be also regulated by miR-517a/b expression in AML. Conclusions Our findings indicated that the obesity-related gene LEP methylation is associated with LEP inactivation, and acts as an independent prognostic predictor in AML.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3385
Author(s):  
Axel H. Schönthal ◽  
Steve Swenson ◽  
Radu O. Minea ◽  
Hye Na Kim ◽  
Heeyeon Cho ◽  
...  

Despite progress in the treatment of acute myeloid leukemia (AML), the clinical outcome remains suboptimal and many patients are still dying from this disease. First-line treatment consists of chemotherapy, which typically includes cytarabine (AraC), either alone or in combination with anthracyclines, but drug resistance can develop and significantly worsen prognosis. Better treatments are needed. We are developing a novel anticancer compound, NEO212, that was created by covalent conjugation of two different molecules with already established anticancer activity, the alkylating agent temozolomide (TMZ) and the natural monoterpene perillyl alcohol (POH). We investigated the anticancer activity of NEO212 in several in vitro and in vivo models of AML. Human HL60 and U937 AML cell lines, as well as different AraC-resistant AML cell lines, were treated with NEO212 and effects on cell proliferation, cell cycle, and cell death were investigated. Mice with implanted AraC-sensitive or AraC-resistant AML cells were dosed with oral NEO212, and animal survival was monitored. Our in vitro experiments show that treatment of cells with NEO212 results in growth inhibition via potent G2 arrest, which is followed by apoptotic cell death. Intriguingly, NEO212 was equally potent in highly AraC-resistant cells. In vivo, NEO212 treatment strikingly extended survival of AML mice and the majority of treated mice continued to thrive and survive without any signs of illness. At the same time, we were unable to detect toxic side effects of NEO212 treatment. All in all, the absence of side effects, combined with striking therapeutic activity even in an AraC-resistant context, suggests that NEO212 should be developed further toward clinical testing.


2016 ◽  
Vol 113 (43) ◽  
pp. E6669-E6678 ◽  
Author(s):  
Mark A. Gregory ◽  
Angelo D’Alessandro ◽  
Francesca Alvarez-Calderon ◽  
Jihye Kim ◽  
Travis Nemkov ◽  
...  

Activating mutations in FMS-like tyrosine kinase 3 (FLT3) are common in acute myeloid leukemia (AML) and drive leukemic cell growth and survival. Although FLT3 inhibitors have shown considerable promise for the treatment of AML, they ultimately fail to achieve long-term remissions as monotherapy. To identify genetic targets that can sensitize AML cells to killing by FLT3 inhibitors, we performed a genome-wide RNA interference (RNAi)-based screen that identified ATM (ataxia telangiectasia mutated) as being synthetic lethal with FLT3 inhibitor therapy. We found that inactivating ATM or its downstream effector glucose 6-phosphate dehydrogenase (G6PD) sensitizes AML cells to FLT3 inhibitor induced apoptosis. Examination of the cellular metabolome showed that FLT3 inhibition by itself causes profound alterations in central carbon metabolism, resulting in impaired production of the antioxidant factor glutathione, which was further impaired by ATM or G6PD inactivation. Moreover, FLT3 inhibition elicited severe mitochondrial oxidative stress that is causative in apoptosis and is exacerbated by ATM/G6PD inhibition. The use of an agent that intensifies mitochondrial oxidative stress in combination with a FLT3 inhibitor augmented elimination of AML cells in vitro and in vivo, revealing a therapeutic strategy for the improved treatment of FLT3 mutated AML.


2005 ◽  
Vol 114 (2) ◽  
pp. 121-124
Author(s):  
T. Fietz ◽  
R. Arnold ◽  
G. Massenkeil ◽  
K. Rieger ◽  
B. Reufi ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120925 ◽  
Author(s):  
Binje Vick ◽  
Maja Rothenberg ◽  
Nadine Sandhöfer ◽  
Michela Carlet ◽  
Cornelia Finkenzeller ◽  
...  

Leukemia ◽  
2021 ◽  
Author(s):  
Tanja Božić ◽  
Chao-Chung Kuo ◽  
Jan Hapala ◽  
Julia Franzen ◽  
Monika Eipel ◽  
...  

AbstractAssessment of measurable residual disease (MRD) upon treatment of acute myeloid leukemia (AML) remains challenging. It is usually addressed by highly sensitive PCR- or sequencing-based screening of specific mutations, or by multiparametric flow cytometry. However, not all patients have suitable mutations and heterogeneity of surface markers hampers standardization in clinical routine. In this study, we propose an alternative approach to estimate MRD based on AML-associated DNA methylation (DNAm) patterns. We identified four CG dinucleotides (CpGs) that commonly reveal aberrant DNAm in AML and their combination could reliably discern healthy and AML samples. Interestingly, bisulfite amplicon sequencing demonstrated that aberrant DNAm patterns were symmetric on both alleles, indicating that there is epigenetic crosstalk between homologous chromosomes. We trained shallow-learning and deep-learning algorithms to identify anomalous DNAm patterns. The method was then tested on follow-up samples with and without MRD. Notably, even samples that were classified as MRD negative often revealed higher anomaly ratios than healthy controls, which may reflect clonal hematopoiesis. Our results demonstrate that targeted DNAm analysis facilitates reliable discrimination of malignant and healthy samples. However, since healthy samples also comprise few abnormal-classified DNAm reads the approach does not yet reliably discriminate MRD positive and negative samples.


Sign in / Sign up

Export Citation Format

Share Document