scholarly journals Neuron tracing and quantitative analyses of dendritic architecture reveal symmetrical three-way-junctions and phenotypes of git-1 in C. elegans

2021 ◽  
Author(s):  
Omer Yuval ◽  
Yael Iosilevskii ◽  
Benjamin Podbilewicz ◽  
Tom Shemesh

AbstractComplex dendritic trees are a distinctive feature of neurons. Alterations to dendritic morphology are associated with developmental, behavioral and neurodegenerative diseases. The highly-arborized PVD neuron of C. elegans serves as a model to study dendritic patterning; however, quantitative, objective and automated analyses of PVD morphology are missing. Here, we present a method for neuronal feature extraction, based on deep-learning and fitting algorithms. The extracted neuronal architecture is represented by a database of structural elements for abstracted analysis. We obtain excellent automatic tracing of PVD trees and uncover that dendritic junctions are unevenly distributed. Surprisingly, these junctions are three-way-symmetrical on average, while dendritic processes are arranged orthogonally. We quantify the effect of mutations in git-1, a regulator of dendritic spine formation, on PVD morphology and discover a localized reduction in junctions. Our findings shed new light on PVD architecture, demonstrating the effectiveness of our objective analyses of dendritic morphology and suggest molecular control mechanisms.Author SummaryNerve cells (neurons) collect input signals via branched cellular projections called dendrites. A major aspect of the study of neurons, dating back for over 100 years, involves the characterization of neuronal shapes and of their dendritic processes.Here, we present an algorithmic approach for detection and classification of the tree-like dendrites of the PVD neuron in C. elegans worms. A key feature of our approach is to represent dendritic trees by a sets of fundamental shape elements, such as junctions and linear sections. By analyzing this dataset, we discovered several novel structural features. We have found that the junctions connecting branched dendrites have a three-way-symmetry, although the dendrites are arranged in a crosshatch pattern; and that the distribution of junctions varies across distinct sub-classes of the PVD’s dendritic tree. We further quantified subtle morphological effects due to mutations in git-1 gene, a known regulator of dendritic spines. Our findings suggest molecular mechanisms for dendritic shape regulation and may help direct new avenues of research.

2021 ◽  
Vol 17 (7) ◽  
pp. e1009185
Author(s):  
Omer Yuval ◽  
Yael Iosilevskii ◽  
Anna Meledin ◽  
Benjamin Podbilewicz ◽  
Tom Shemesh

Complex dendritic trees are a distinctive feature of neurons. Alterations to dendritic morphology are associated with developmental, behavioral and neurodegenerative changes. The highly-arborized PVD neuron of C. elegans serves as a model to study dendritic patterning; however, quantitative, objective and automated analyses of PVD morphology are missing. Here, we present a method for neuronal feature extraction, based on deep-learning and fitting algorithms. The extracted neuronal architecture is represented by a database of structural elements for abstracted analysis. We obtain excellent automatic tracing of PVD trees and uncover that dendritic junctions are unevenly distributed. Surprisingly, these junctions are three-way-symmetrical on average, while dendritic processes are arranged orthogonally. We quantify the effect of mutation in git-1, a regulator of dendritic spine formation, on PVD morphology and discover a localized reduction in junctions. Our findings shed new light on PVD architecture, demonstrating the effectiveness of our objective analyses of dendritic morphology and suggest molecular control mechanisms.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Hiroyuki Kuwahara ◽  
Ramzan Umarov ◽  
Islam Almasri ◽  
Xin Gao

To engineer cells for industrial-scale application, a deep understanding of how to design molecular control mechanisms to tightly maintain functional stability under various fluctuations is crucial. Absolute concentration robustness (ACR) is a category of robustness in reaction network models in which the steady-state concentration of a molecular species is guaranteed to be invariant even with perturbations in the other molecular species in the network. Here, we introduce a software tool, absolute concentration robustness explorer (ACRE), which efficiently explores combinatorial biochemical networks for the ACR property. ACRE has a user-friendly interface, and it can facilitate efficient analysis of key structural features that guarantee the presence and the absence of the ACR property from combinatorial networks. Such analysis is expected to be useful in synthetic biology as it can increase our understanding of how to design molecular mechanisms to tightly control the concentration of molecular species. ACRE is freely available at https://github.com/ramzan1990/ACRE.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Alison Philbrook ◽  
Shankar Ramachandran ◽  
Christopher M Lambert ◽  
Devyn Oliver ◽  
Jeremy Florman ◽  
...  

In neural circuits, individual neurons often make projections onto multiple postsynaptic partners. Here, we investigate molecular mechanisms by which these divergent connections are generated, using dyadic synapses in C. elegans as a model. We report that C. elegans nrx-1/neurexin directs divergent connectivity through differential actions at synapses with partnering neurons and muscles. We show that cholinergic outputs onto neurons are, unexpectedly, located at previously undefined spine-like protrusions from GABAergic dendrites. Both these spine-like features and cholinergic receptor clustering are strikingly disrupted in the absence of nrx-1. Excitatory transmission onto GABAergic neurons, but not neuromuscular transmission, is also disrupted. Our data indicate that NRX-1 located at presynaptic sites specifically directs postsynaptic development in GABAergic neurons. Our findings provide evidence that individual neurons can direct differential patterns of connectivity with their post-synaptic partners through partner-specific utilization of synaptic organizers, offering a novel view into molecular control of divergent connectivity.


2021 ◽  
Author(s):  
Simon Weiler ◽  
Drago Guggiana Nilo ◽  
Tobias Bonhoeffer ◽  
Mark H&uumlbener ◽  
Tobias Rose ◽  
...  

Pyramidal cells of neocortical layer 2/3 (L2/3 PyrCs) integrate signals from numerous brain areas and project throughout the neocortex. Within L2/3, PyrCs show functional and structural specializations depending on their pial depth, indicating participation in different functional microcircuits. However, it is unknown whether these depth-dependent differences result from separable L2/3 PyrC subtypes or whether functional and structural features represent a continuum while correlating with pial depth. Here, we assessed the stimulus selectivity, electrophysiological properties, dendritic morphology, and excitatory and inhibitory synaptic connectivity across the depth of L2/3 in the binocular visual cortex (bV1) of female mice. We find that the structure of the apical but not the basal dendritic tree varies with pial depth, which is accompanied by differences in passive but not active electrophysiological properties. PyrCs in lower L2/3 receive increased excitatory and inhibitory input from L4, while upper L2/3 PyrCs receive a larger proportion of intralaminar input. Complementary in vivo calcium imaging revealed a systematic change in visual responsiveness, with deeper L2/3 PyrCs showing more robust responses than superficial PyrCs. Furthermore, deeper L2/3 PyrCs are more strongly driven by contralateral than ipsilateral eye stimulation. In contrast, orientation- and direction-selectivity of L2/3 PyrCs are not dependent on pial depth. Importantly, the transitions of the various properties are gradual, and cluster analysis does not support the classification of L2/3 PyrCs into discrete subtypes. These results show that L2/3 PyrCs' multiple functional and structural properties systematically correlate with their depth within L2/3, forming a continuum rather than representing discrete subtypes.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


Author(s):  
Anna Sobiepanek ◽  
Alessio Paone ◽  
Francesca Cutruzzolà ◽  
Tomasz Kobiela

AbstractMelanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required. A possible strategy may involve targeting cellular energy metabolism, which has been recognized as crucial for cancer development and progression and which connects through glycolysis to cell surface glycan biosynthetic pathways. Protein glycosylation is a hallmark of more than 50% of the human proteome and it has been recognized that altered glycosylation occurs during the metastatic progression of melanoma cells which, in turn facilitates their migration. This review provides a description of recent advances in the search for factors able to remodel cell metabolism between glycolysis and oxidative phosphorylation, and of changes in specific markers and in the biophysical properties of cells during melanoma development from a nevus to metastasis. This development is accompanied by changes in the expression of surface glycans, with corresponding changes in ligand-receptor affinity, giving rise to structural features and viscoelastic parameters particularly well suited to study by label-free biophysical methods.


2021 ◽  
pp. 153537022199981
Author(s):  
Chamithi Karunanayake ◽  
Richard C Page

The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucia Silvestrini ◽  
Norhan Belhaj ◽  
Lucia Comez ◽  
Yuri Gerelli ◽  
Antonino Lauria ◽  
...  

AbstractThe maturation of coronavirus SARS-CoV-2, which is the etiological agent at the origin of the COVID-19 pandemic, requires a main protease Mpro to cleave the virus-encoded polyproteins. Despite a wealth of experimental information already available, there is wide disagreement about the Mpro monomer-dimer equilibrium dissociation constant. Since the functional unit of Mpro is a homodimer, the detailed knowledge of the thermodynamics of this equilibrium is a key piece of information for possible therapeutic intervention, with small molecules interfering with dimerization being potential broad-spectrum antiviral drug leads. In the present study, we exploit Small Angle X-ray Scattering (SAXS) to investigate the structural features of SARS-CoV-2 Mpro in solution as a function of protein concentration and temperature. A detailed thermodynamic picture of the monomer-dimer equilibrium is derived, together with the temperature-dependent value of the dissociation constant. SAXS is also used to study how the Mpro dissociation process is affected by small inhibitors selected by virtual screening. We find that these inhibitors affect dimerization and enzymatic activity to a different extent and sometimes in an opposite way, likely due to the different molecular mechanisms underlying the two processes. The Mpro residues that emerge as key to optimize both dissociation and enzymatic activity inhibition are discussed.


2012 ◽  
Vol 302 (7) ◽  
pp. G664-G675 ◽  
Author(s):  
Satish Rattan ◽  
Jagmohan Singh

The knowledge of molecular control mechanisms underlying the basal tone in the intact human internal anal sphincter (IAS) is critical for the pathophysiology and rational therapy for a number of debilitating rectoanal motility disorders. We determined the role of RhoA/ROCK and PKC pathways by comparing the effects of ROCK- and PKC-selective inhibitors Y 27632 and Gö 6850 (10−8to 10−4M), respectively, on the basal tone in the IAS vs. the rectal smooth muscle (RSM). Western blot studies were performed to determine the levels of RhoA/ROCK II, PKC-α, MYPT1, CPI-17, and MLC20in the unphosphorylated and phosphorylated forms, in the IAS vs. RSM. Confocal microscopic studies validated the membrane distribution of ROCK II. Finally, to confirm a direct relationship, we examined the enzymatic activities and changes in the basal IAS tone and p-MYPT1, p-CPI-17, and p-MLC20, before and after Y 27632 and Gö 6850. Data show higher levels of RhoA/ROCK II and related downstream signal transduction proteins in the IAS vs. RSM. In addition, data show a significant correlation between the active RhoA/ROCK levels, ROCK enzymatic activity, downstream proteins, and basal IAS tone, before and after ROCK inhibitor. From these data we conclude 1) RhoA/ROCK and downstream signaling are constitutively active in the IAS, and this pathway (in contrast with PKC) is the critical determinant of the basal tone in intact human IAS; and 2) RhoA and ROCK are potential therapeutic targets for a number of rectoanal motility disorders for which currently there is no satisfactory treatment.


Sign in / Sign up

Export Citation Format

Share Document